
EE 374: Blockchain Foundations Stanford, Spring 2022

Lecture 10: Accounts Model and Merkle Trees

April 29, 2022

Lecturer: Dr. Dionysis Zindros Scribe: Yifan Yang

1 Accounts Model

1.1 Accounts Model Compared with UTXO Model

Recall the previous UTXO model: we store a set of unspent transaction outputs (UTXOs). When
a transaction occurs, UTXOs corresponding to the transaction’s inputs are removed and UTXOs
corresponding to the transaction’s outputs are added into the UTXO set to produce a new UTXO
set, as shown in Figure 1.

UTXO Set

State 0

UTXO Set

State 1

UTXO Set

State 2

tx tx

Figure 1: State transitions in the UTXO model

The accounts model is another model of transactions. In the accounts model, transactions contain
1) the account that sends balance (from), 2) the account that receives balance (to), 3) the value of
the transaction (val), 4) the transaction fee (fee), and 5) the signature on the transaction (σ).

From To Val Fee σ

Figure 2: Structure of a transaction in the accounts model

For the accounts model, the state is maintained by accounts (public keys) and balances, as shown
in Figure 3 and Figure 4.

Balances

State 0

Balances

State 1

Balances

State 2

tx tx

Figure 3: State transitions in the accounts model

The function that takes in a state and a transaction and returns a new state is called a transition
function. It has a general form of:

δ(st, tx) =

{
st′ if tx valid w.r.t. st

⊥ otherwise
(1)

1

Balances State

Alice 5 bu

Bob 100 bu

Dionysis 1 bu

Figure 4: Balance State

Specifically, the transition function of UTXO model is given by:

δUTXO(st, tx) =

{
st \ txin ∪ txout if tx valid w.r.t. st

⊥ otherwise
(2)

Where txin is the set of unspent outputs in the “inputs” field of tx, and txout is the set of newly
generated outputs in the “outputs” field of tx.
The transaction validation process of UTXO model is

- Check σ

- Check conservation

- Check inputs are in st

Similarly, the transition function of the accounts model could be written as:

δacc(st, tx) =


st′ where st′[tx.from] = st[tx.from]− tx.value,

st′[tx.to] = st[tx.to] + tx.value, if tx valid w.r.t. st

⊥ otherwise

(3)

The transaction validation process of the accounts model is

- Check σ

- Check st[tx.from] ≥ tx.value

1.2 Accounts Model Replay Attack

Here comes a problem. In the accounts model, if the same transaction is sent to the network twice,
should the second transaction be included or not? For example, one morning, Bob bought a cup of
coffee from Starbucks. The next morning, he bought a cup of coffee again. These two transactions
have the same fields, even the signature.
If the network decides to accept transactions that are the same, the following replay attack could

happen: an adversarial coffee shop could replay the transaction even if Bob didn’t buy a coffee.
However, if the network decided not to include transactions that are same, then Bob could only
buy a coffee once.
The solution is to add a nonce field to transactions. The nonce is an 256-bit integer per source

account which is incremented every new transaction. The transaction structure now looks like
Figure 5.

2

From To Val Fee nonce σ

Figure 5: Structure of tx in accounts model

And therefore, while validating transactions, an additional step of validating the nonce should be
included. Transactions in which the nonce has already been used is rejected. This means that the
state contains the current nonce for each account, in addition to the balance. The state transition
function must also update the nonce for the “from” account of the transaction.
A side by side comparison between the two models of transactions is shown in Figure 6.

UTXO Accounts

Real System Bitcoin Ethereum

Transaction tx tx From To Val Fee nonce σ

Transistion δ
Remove consumed out-
puts and add produced
outputs

Update balances
st′[from] := st[from]− value

st′[to] := st[to] + value

Validation
Signature, Law of Con-
servation, Inputs exist
in st.

Signature, Sufficient balance, Nonce
unique.

Genesis State ∅ {}

Figure 6: Side by Side Comparison of Two Models

2 State Machine Replication

We talk briefly about State Machine Replication (SMR). A state machine consists of a state,
inputs and a transition function. The machine has an initial state. Based on its inputs and the
state transition function, the machine updates its state. In SMR, multiple nodes in the network
run a state machine in a distributed manner. The term “replication” signifies that each node in
the network maintains the state of the machine and runs its transition functions locally. The goal
of SMR is that each node runs the same set of state transitions and in the same order so that there
is agreement or consensus on the state of the machine.

A blockchain can be considered as a distributed replicated database. A blockchain can help us
run SMR. We have seen two examples of state machines that the blockchain can run — the accounts
model and the UTXO model. In both cases, there is a state st, state transition functions δ, and
inputs (which are transactions in this case). The initial state is specified by the genesis state.

3 Light Clients

How to run a blockchain node efficiently? Efficiency has multiple dimensions: storage, communica-
tion, and computation. For most application scenarios, the blockchain node has limited resources.

3

For example, if we store all the data of the chain, it would take gigabytes of storage. Validating
every transaction in the network would be very heavy work for a phone. Therefore, a light client
is needed for these resource-limited nodes.

3.1 Storage Efficiency: Merkle Trees

For a light client, it is better to save the data at a server and retrieve data at usage. However, we
need to prove the integrity of the retrieved data. Hash functions are useful in this case. Suppose
that we wanted to store a file on a server and verify that we receive the correct file from the server.
We could hash the file and store the hash (checksum) locally. When we request files from the data
server, we validate the checksum of the retrieved file to verify that it is the exact file we saved on
the server. However, this requires clients to retrieve the entire file to validate its integrity even if
only a 1 kilobyte chunk is needed.
We can also split the file into chunks and hash each chunk. This reduces the communication

complexity: clients only need the chunk to be transferred. However, this requires more hash key
storage for the client. The client needs to store one hash per chunk, making the storage complexity
linear in the size of the file. There is a trade off between communication complexity and storage
complexity: with large chunks, comes high communication complexity and with small chunks,
comes high storage complexity.
Our goal is to achieve low storage and low communication. Specifically, storage with O(1)

complexity and communication with O(log n) complexity where n is the number of chunks of the
file. And this is done with a data structure called Merkle tree.

3.2 Data Structure: Merkle Tree

Files are split into n data chunks.

D : D[0], D[1], ..., D[n− 1]

A binary tree of depth µ is created, where there are 2µ = n leaves (for simplicity, assume that
n is a power of 2). Each node in the binary tree stores a hash h which is the hash of its children
concatenated.

h := H(h[left] ∥ h[right])

Nodes on the leaves store the hash of the corresponding data chunk. The client stores the
Merkle tree root (MTR) hϵ. When a data chunk is requested, the server sends the data chunk,
along with every sibling hash value to the clients as shown in Figure 7. For example, when data
chunk at index j is requested, the server sends D[j], π0, π1, π2, and π3 to the client. The client
walks from the received data chunk all the way up to the root to check if the hash values are
intact. From calculating e0 by hashing the data chunk, to the top level eµ+1, the client calculates
ek = H(ek−1 ∥ πk−1) or ek = H(πk−1 ∥ ek−1)(left child first). In this example, the client computes
the values e0 = H(D[j]), e1 = H(e0 ∥ π0), e2 = H(π1 ∥ e1), e3 = H(e2 ∥ π2), and e4 = H(π3 ∥ e3)
and then compares e4 with hϵ.
With this data structure, the data transferred is a list of π values and the data chunk of fixed

size, which gives |π| = O(log n) succinct communication and O(1) constant storage.

4

hϵ

π3

H(...)

H(H(D[0]) ∥H(D[1]))

H(D[0])

D[0]

H(D[1])

D[0]

...

...

e3

e2

π1

... ...

e1

e0

D[j]

π0

...

π2

... H(...)

... H(D[n− 1])

D[n− 1]

e4

Figure 7: Merkle Tree

The Merkle tree structure is described by the functions

compress(D)→ hϵ, (4)

prove(D, j)→ π, and (5)

verify(hϵ, d, j, π)→

{
true if valid

false otherwise
. (6)

The correctness of the Merkle tree is specified as:

∀D,∀j, verify(compress(D), D[j], j, prove(D, j)) = true (7)

3.3 Security of Merkle Trees

MT-security means that if the client outputs true after verifying the received data chunk and
proof, then the received data must be the same data that was originally stored. To define security
of Merkle trees formally, we create the following game that lets an adversary try to break the
protocol.

MERKLEA(κ) :
D,π, j, d ← A(1κ)
re turn verify(compress(D), d, j, π) ∧ d ̸= D[j]

Our goal is to prove that

∀ PPT A : Pr[MERKLEA(κ) = 1] ≤ negl(κ)

5

Theorem 3.1. Let H be a collision-resistant hash function. Then Merkle trees constructed with H
are MT-secure.

Proof. Suppose for contradiction, A breaks MT-security. We will construct an adversary A′ that
breaks collision-resistance of H.

A
MT

A′ H
1κ

D, j, d, π

1κ

x1, x2 s.t. x1 ̸= x2 ∧H(x1) = H(x2)

We use e for the hash value calculated by the client, h for the expected hash value in the correct
Merkle tree, and π for the hash values returned by the server.

Consider the event that A succeeds, i.e. verify(compress(D), d, j, π) = 1 ∧ d ̸= D[j].
A′ works as follows:
Given that A succeeds, the returned list of π is used to calculate hashes of the nodes to verify

the returned data chunk, which involves calculating e values by concatenating the children of the
nodes. The hash of the root is the same (hϵ = etop) and the hash of the data chunk is different
(e0 ̸= h0). (If not, A′ has already found a collision because different data chinks have the same
hash.) Therefore, there must exists a node, some level k in the tree, such that ek = hk but its
children ek−1 or πk−1 not equal to the expected h values. (These must exist because roots are the
same, but leaves are different). In this case, we have two different inputs that hash to the same
value.
Then, adversary A′ returns children of ek from the verifier tree at level k as x1 and children of hk

from real tree at the corresponding position as x2. Then, x1 and x2 satisfy x1 ̸= x2∧H(x1) = H(x2).
Therefore, the probability of breaking the Merkle tree protocol is the same as the probability of

breaking the collision-resistant hash function H.

Pr[MERKLEA(κ) = 1] = Pr[CollisionA′(κ) = 1]

But Pr[CollisionA′(κ) = 1] is negligible by assumption, which means the probability of breaking
Merkle tree protocol is also negligible.

6

	Accounts Model
	Accounts Model Compared with UTXO Model
	Accounts Model Replay Attack

	State Machine Replication
	Light Clients
	Storage Efficiency: Merkle Trees
	Data Structure: Merkle Tree
	Security of Merkle Trees

