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Mutual information

Fundamental Limits of:
Data Transmission (Channel coding theory)

Data Compression (Rate distortion theory)

This lecture:

Investigate the role mutual information plays in machine
learning through selected examples



Prediction problem

We observe training data (X, Y;), (X,,Y5), ..., (X,,, ¥,,), X; € R is
the feature, and Y; Is the label. We need to construct a
prediction algorithm for future feature vectors.

Two general approaches towards prediction:

Decision theoretic approach: first fit a probabilistic model of
the joint distribution Pyy, and then compute the Bayes rule

Learning theoretic approach: directly construct a prediction
f(X) with the aim that E[L(f(X),Y)] is small.



Two approaches

We discuss two approaches that are decision theoretic and

learning theoretic, respectively. They both rely on mutual
Information.

Decision theoretic approach: Tree-Augmented Naive Bayes
(TAN): we assume that the joint distribution Py factorizes as a

tree graphical model

Learning theoretic approach: we assume that the function

f (X) recursively partitions the feature space using a tree, and
we try to find a tree that has small test error



Decision theoretic approach

We reduce the problem to an unsupervised learning problem
first:

Say we observe X4, X,, ..., X;, such that the distribution Py
factorizes as a tree. How we can learn Py?

We do this unsupervised learning algorithm for each label Y.



Tree graphical model structure

Definition 4.2.1 /Chow-Liu Dependence Structure/ Let (i,)%_; be an arbitrary
permutation of 1 ={1,2,...,d}. The singleton sets A, ={i,.}, r=1,...,d, are
a partition of 1. Let o be a sequence of pairs of singletons of 1

. . \d
0 = (IryJr)p=1 s (4.2)
where
jlzwjjTE{il,...,’ir_l}glj ?":2,...?(1. (43)

Then o is a Chow-Liu dependence structure.

A comprehensive introduction: https://people.kth.se/~tjtkoski/chowliulect.pdf



https://people.kth.se/~tjtkoski/chowliulect.pdf

Tree graphical model structure

An example of a Chow-Liu dependence structure

(jl:j23j3aj4aj5aj6:j7) — (Q); 1: 2} 1&4& 53 3)

el
R P

A comprehensive introduction: https://people.kth.se/~tjtkoski/chowliulect.pdf



https://people.kth.se/~tjtkoski/chowliulect.pdf

Tree graphical model distribution

In addition, a Chow-Liu dependence structure defines a product approximation
of a known probability distribution p as

d

pi, (i) ][ p (=i,

r=>2

p(x|o) zj,)

(4.5)

d
— Hpir (:B@T)H tr g (z; J ) ., T = (:qu)le c X.
r—1

s Pi, (wi,.) pj, (24,)

Important: this shows that tree can be represented as either
directed or undirected graphical models

A comprehensive introduction: https://people.kth.se/~tjtkoski/chowliulect.pdf



https://people.kth.se/~tjtkoski/chowliulect.pdf

Maximum likelihood estimation

Parameter space: P = {piu; (@i, z;);(i,7) € I x L,i # j}
Likelihood function: L (o, P) = Hp( " |, P)

For any ¢ € 1 and £ € A we introduce
Ie. (w) 1 ife=a
> 0 otherwise.
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Log likelihood

[(c,P)=InL (c,P) Zlnp( (”)|J,P)
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Log likelihood

Non-negativity of KL divergence gives:

p?lIL( ):531 (S)J feX’il:

Di, i (§,1m)
pj. (n)

Plugging-in the log likelihood:
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Log likelihood

Non-negativity of KL divergence gives:

piIL( ):ﬁi‘rl (f)J fe/‘{’)ﬁil!
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Plugging-in the log likelihood:
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Chow-Liu algorithm (1968)

Clearly, the loglikelihood function in (4.22) is the empirical version, or plug-in
estimate, of (4.8). The first term Zle > ccx, Pi, (§)Inp;, (§) does not depend

on o. Hence, we find the maximum likelihood estimate o™ of the structure o
by

d ™
ML _ argmax {ZT(?’T"?T) > (4.24)
—2 )

The number of trees with d nodes is finite. Hence in principle we could find
oML by exhaustive search and evaluation of (r:r,, PML). Nevertheless, since the

number of spanning trees with d nodes is d% 2 85, Cayleyfs formula p.82],
exhaustive search is infeasible in practice. Hence the second main result of [16]
is the observation that there exists a computationally effective way of finding
oML,

There are well known standard algorithms for finding the maximum weight
spanning tree, e.g., the Kruskal algorithm or the Prim algorithm [1], indepen-
dently discovered by several others, too, c.f., [48, 79]. The algorithm finds the
maximum weight spanning tree in O (d2 In d) time.



Zooming out

Why should we use maximum likelihood?

A variational formula

d
o' = arg max E | [
O
r—=2

he Chow-Liu algorithm replaces the true mutual information by
the empirical mutual information.

Conceptually, what If there exists a much better estimator for
mutual information than the empirical one?



Numerical results (alphabet=10"4)
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The Jiao—Venkat—Han—Weissman
(JVHW) Shannon entropy, Renyi
entropy, and mutual information
estimator

What is Shannon entropy, Renyi entropy, and
mutual information?

The Shannon entropy, Renyl entropyv, and mutual information are
information theoretic measures that have far reaching applications in
and out of information theory.

What can our software do?

Our software comprises of MATLAB and Pyvthon 2.7(3) packages that
can estimate the Shannon entropy of a discrete distribution from
independent identically distributed samples from this distribution, and
the mutual information between two discrete random variables from
samples. It also includes MATLAB packages that can estimate the
Renvi entropy of arbitrary positive orders of a discrete distribution
from independent identically distributed samples from this
distribution.

For details about how it works, please refer to our paper Minimax
Estimation of Functionals of Discrete Distributions’,IEEE Transactions
on Information Theory, Vol.61, Issue 5, pp 2835-2885, May 2015. For
details about how to use it in Matlab or Python, please checkout our
Github repo below:

JVHW entropy and mutual information estimators Github code

JVHW Renyi entropy estimators Github code



Chow-Liu algorithm (1968)
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Our modified CL (JVHW’15)
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Tree-Augmented Naive Bayes (JHW’16)

Dataset “letter” in UCI machine learning repository
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Learning theoretic approach

How can we find a function f(X) that estimates Y well?

s . 4
: Information Processing Letters —
e £~ " 1 .'p_"

e .r;-- lL, Volume 5, Issue 1, May 1976, Pages 15-17

Constructing optimal binary decision trees is NP-complete +

Laurent Hyafil, Ronald L. Rivest

Decision tree learning literature: use heuristics



An early example: ID3

ID3 algorithm

From Wikipedia, the free encyclopedia

In decision tree learming, DS (Iterative Dichotomiser 3) is an algornthm invented by Ross Quinlant]

Our basic algorithm, ID3, learns decision trees by constructing them top-
down. beginning with the question “which attribute should be tested at the root
of the tree?” To answer this question, each instance attribute is evaluated using
a statistical test to determine how well it alone classifies the traming examples.
The best attribute is selected and used as the test at the root node of the tree
A descendant of the root node is then created for each possible value of this
attribute, and the training examples are sorted to the appropriate descendant node
(1.e., down the branch corresponding to the example’s value for this attribute).
The entire process is then repeated using the training examples associated with
each descendant node to select the best attribute to test at that point in the tree.



Measuring the quality of attributes

The central choice in the ID3 algorithm is selecting which attribute to test af
each node in the tree. We would like to select the attribute that is most useful
for classifying examples. What is a good quantitative measure of the worth of
an attribute? We will define a statistical property, called information gain. tha
measures how well a given attribute separates the training examples according 1o
their target classification. ID3 uses this information gain measure to select among
the candidate attributes at each step while growing the tree.

Information Gain: conditional mutual information

I(Y; X;[{X; : j selected})



Many variants of decision trees

C4.5, CART, Adaboost, Xgboost...

Introduction to Boosted Trees

XGBoost is short for “Extreme Gradient Boosting”, where the term “Gradient Boosting” is proposed in the
paper Greedy Function Approximation: A Gradient Boosting Machine, by Friedman. XGBoost is based on this
original model. This is a tutorial on gradient boosted trees, and most of the content is based on these slides by
the author of xgboost.

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package®. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions ® published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].



