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Lecture 11: Channel Coding Theorem: Converse Part
Lecturer: Tsachy Weissman Scribe: Erdem Bıyık

In this lecture1, we will continue our discussion on channel coding theory. In the previous lecture, we proved
the direct part of the theorem, which suggests if R < C(I), then R is achievable. Now, we are going to prove
the converse statement: If R > C(I), then R is not achievable. We will also state some important notes
about the direct and converse parts.

1 Recap: Communication Problem

Recall the communication problem:

J ∼ Unif{1, 2, . . . ,M} −→ encoder
Xn

−→
Memoryless Channel

P (Y |X)
Y n

−→ decoder −→ Ĵ

• Rate = R = logM
n

bits
channel use

• Probability of error = Pe = P (Ĵ 6= J)

The main result is C = C(I) = maxPX
I(X;Y ). Last week, we showed R is achievable if R < C(I). In this

lecture, we are going to prove that if R > C(I), then R is not achievable.

2 Fano’s Inequality

Theorem (Fano’s Inequality). Let X be a discrete random variable and X̂ = X̂(Y ) be a guess of X based
on Y . Let Pe = P (X 6= X̂). Then,

H(X|Y ) ≤ h2(Pe) + Pe log(|X | − 1)

where h2 is the binary entropy function.
Proof. Let V = 1{X 6=X̂}, i.e. V is 1 if X 6= X̂ and 0 otherwise.

H(X|Y ) ≤ H(X,V |Y ) (1)

= H(V |Y ) +H(X|V, Y ) (2)

≤ H(V ) +H(X|V, Y ) (3)

= H(V ) +
∑
v,y

H(X|V =v, Y =y)P (V =v, Y =y) (4)

= H(V ) +
∑
y

H(X|V =0, Y =y)P (V =0, Y =y) +
∑
y

H(X|V =1, Y =y)P (V =1, Y =y) (5)

= H(V ) +
∑
y

H(X|V =1, Y =y)P (V =1, Y =y) (6)

≤ H(V ) + log(|X | − 1)
∑
y

P (V =1, Y =y) (7)

= H(V ) + log(|X | − 1)P (V =1) (8)

= h2(Pe) + Pe log(|X | − 1) (9)

1Reading: Chapter 7.9 and 7.12 of Cover, Thomas M., and Joy A. Thomas. Elements of information theory. Wiley, 2006.
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where (1) is from data processing inequality, (2) is due to chain rule, (3) is because conditioning can only
reduce (or not change) entropy. (4) directly follows from the definition of conditional entropy. (6) is because
when V = 0, X = X̂ and X is a function of Y , so H(X|V = 0, Y = y) = 0. Note that H(X|V = 1, Y = y)
is maximized when P (X|V = 1, Y = y) is uniformly distributed, which yields to log(|X | − 1). Hence, (7)
follows. The next step is just law of total probability, and completes the proof.

Note a weaker version of Fano’s inequality is

H(X|Y ) ≤ 1 + Pe log|X | (10)

which will be useful later in proving the converse theorem. This is also stated as

Pe ≥
H(X|Y )− 1

logX
(11)

Fano’s inequality basically says that if H(X|Y ) is large, i.e., if given Y , X has a lot of uncertainty, then any
estimator of X based on Y must have a large probability of error.

3 Proof of Converse Part

For any scheme,

logM −H(J |Y n) = H(J)−H(J |Y n) (12)

= I(J ;Y n) (13)

= H(Y n)−H(Y n|J) (14)

=

n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1, J) (15)

≤
n∑

i=1

H(Yi)−H(Yi|Y i−1, J) (16)

≤
n∑

i=1

H(Yi)−H(Yi|Y i−1, Xi, J) (17)

=

n∑
i=1

H(Yi)−H(Yi|Xi) (18)

=

n∑
i=1

I(Xi;Yi) (19)

≤ nC(I) (20)

where (12) is because J is uniformly distributed, (13), (14) and (19) are directly from the definition of
mutual information, (15) is from the properties of joint/conditional entropy, (16) and (17) are due to the
fact that conditioning can only decrease (or not change) entropy. Since the channel is memoryless (i.e.
Yi—Xi—(Y i−1, J)), (18) follows. Next, (20) is because the capacity is the maximum of the mutual infor-
mation between input and output.
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Now, for schemes with logM
n ≥ R,

Pe ≥
H(J |Y n)− 1

logM
(21)

≥ logM − nC(I) − 1

logM
(22)

= 1− nC(I)

logM
− 1

logM
(23)

≥ 1− C(I)

R
− 1

nR
(24)

n→∞−→ 1− C(I)

R
(25)

where (21) is due to weaker version of Fano’s inequality, (22) is from the result obtained with (20), and (24)
is because logM

n ≥ R. The result shows that when R > C(I), there exists a positive lower bound on the
probability of error, so R is not achievable.

4 Geometric Interpretation of Converse Part

To interpret the converse theorem geometrically, consider Fig. 1, where a communication channel is visualized
with the corresponding typical sets. In this scheme, 2nR codewords are selected from Xn. After transmission
through the channel, each codeword has a typical set of size 2nH(Y |X) (we’ll study the notion of conditional
typicality in more detail later). Also, note that the typical set of Y n has size 2nH(Y ), naturally independent
from X. Now, note that the typical channel outputs given Xn(i)’s should not intersect in order to have zero

Figure 1: Geometric interpretation of communication problem

probability of error. Hence, there must be at least 2nR2nH(Y |X) elements in the typical channel outputs. By
this volume argument,

2nH(Y ) ≥ 2nR2nH(Y |X) (26)

2nH(Y )−nH(Y |X) ≥ 2nR (27)

2nI(X;Y ) ≥ 2nR (28)

I(X;Y ) ≥ R (29)

Since I(X;Y ) ≤ C, we must have R ≤ C.
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5 Some Notes on the Direct and Converse Parts

5.1 Communication with Feedback

Now assume Xi is a function of both J and Y i−1 (previously, it was a function of only J), so the encoder
knows what decoder receives. This is obviously a stronger encoder, as it has more information. However,
it can be verified that the proof of the converse theorem is valid for memoryless channels with feedback, as
well. This can be directly seen from that the proof uses the properties of the channel only at Eq. (18), which
also holds when feedback is allowed (because the Markov property still holds: Yi—Xi—Y i−1, J). Moreover,
achievability result is obvious as the feedback can be ignored. Therefore, the maximum achievable rate
remains the same with feedback.

On the other hand, this setting increases the reliability of the system, i.e. the probability of error vanishes
faster; and the schemes become simpler.

Example. Recall the binary erasure channel (BEC) shown in Fig. 2. Also recall that the capacity of
BEC is C = 1 − p bits/channel use where p is the erasure probability. Consider a binary erasure channel

Figure 2: Binary erasure channel (image from Wikipedia)

with feedback. A very simple scheme that achieves capacity would be to repeat each information bit until
it is correctly received by the decoder. With this scheme the probability that a bit is correctly sent through
the channel at one attempt is 1 − p, at two attempts is p(1 − p), and so on. Hence, it follows a geometric
distribution, whose mean is 1

1−p . Therefore, we have

1

1− p
channel uses per information bit

Equivalently, R = C. This approach can be extended to all memoryless channels2.

5.2 Practical Schemes

In the proof of the direct part, we showed mere existence of schemes Cn of size at least 2nR and arbitrarily
small probability of error. We did not explicitly give particular code constructions that achieve this. For
practical schemes that enable communication with rates arbitrarily close to the maximum mutual information
with reasonable complexity, we refer to:

2Reading: Horstein, Michael. “Sequential transmission using noiseless feedback.” IEEE Transactions on Information Theory
9.3 (1963): 136-143.
Additional References: Schalkwijk, J., and Thomas Kailath. “A coding scheme for additive noise channels with feedback–I: No
bandwidth constraint.” IEEE Transactions on Information Theory 12.2 (1966): 172-182.
Shayevitz, Ofer, and Meir Feder. “Optimal feedback communication via posterior matching.” IEEE Transactions on Information
Theory 57.3 (2011): 1186-1222.
Li, Cheuk Ting, and Abbas El Gamal. “An efficient feedback coding scheme with low error probability for discrete memoryless
channels.” IEEE Transactions on Information Theory 61.6 (2015): 2953-2963.
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1. Low-density parity-check (LDPC) codes

2. Polar codes

The course EE388 - Modern Coding Theory is encouraged for much more detail. In this course, we are going
to dedicate some time to either of these codes in lectures or homeworks.

5.3 Generalization to Infinite Alphabets

Proof of the direct part assumed finite alphabets; however it carries over to general case by approximation
/ quantization.

5.4 Pe vs Pmax

We previously talked about Pmax which may be more reasonable for some practical systems, and puts a
more stringent condition than Pe:

Pe = P (Ĵ 6= J) =
1

m

m∑
j=1

P (Ĵ 6= j|J = j)

Pmax = max
j
P (Ĵ 6= j|J = j)

Claim. Given a coding scheme Cn such that Pe → 0 as n → ∞, we can find another scheme C ′n, that
achieves Pmax → 0.

Proof. By Markov’s inequality, we have∣∣{1 ≤ j ≤ m : P (Ĵ 6= j|J = j) ≤ 2Pe}
∣∣ ≥ m

2

Hence, given Cn with |Cn| = m, RC and Pe, there exists a C ′n such that |C ′n| ≥ m/2 and Pmax ≤ 2Pe. The

rate of this new code is then Rc′n
≥ log(M/2)

n = logM
n − 1

n ≥ R − ε for arbitrarily small ε when n is large.
Note Pmax of C ′n goes to zero as Pe → 0.

Thus, capacity is the same regardless of whether reliable communication is with respect to Pe or Pmax.
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