
EE376A/STATS376A Information Theory Lecture 15 - 02/27/2018

Lecture 15: Strong, Conditional, & Joint Typicality
Lecturer: Tsachy Weissman Scribe: Nimit Sohoni, William McCloskey, Halwest Mohammad

In this lecture, we will continue developing tools that will be useful going forward, in particular in the context
of lossy compression.1 We will introduce the notions of Strong, Conditional, and Joint Typicality.

1 Notation

A quick recap of the notation:

1. Random variables: i.e. X

2. Alphabet: i.e. X

3. Specific values: i.e. x

4. Sequence of values: i.e. xn

5. Set of all probability mass functions on alphabet X : M(X )

6. Empirical distribution of a sequence xn: Pxn(a) := N(a|xn)
n [N(a|xn) is # of times symbol a

appears in xn]

2 Typicality

2.1 Strong Typicality

Definition 1. A sequence xn ∈ Xn is strongly δ-typical with respect to a probability mass function
P ∈M(X ) if

|Pxn(a)− P (a)| ≤ δ · P (a), ∀a ∈ X (1)

In words, a sequence is strongly δ-typical with respect to P if its empirical distribution is close to the proba-
bility mass function P . [δ is some fixed number, typically small.]

Definition 2. The strongly δ-typical set [or simply strongly typical set] of p, Tδ(P ), is defined as the set
of all sequences that are strongly δ-typical with respect to P , i.e.

Tδ(P ) = {xn : |Pxn(A)− P (a)| ≤ δ · P (a), ∀a ∈ X} (2)

Recall: the weakly ε-typical set of an IID source P is defined as Aε(P ) := {xn :
∣∣− 1

n logP (xn)−H(P )
∣∣ ≤ ε}.

Note: The condition for inclusion in the weakly ε-typical set is indeed weaker than the condition to be

in the strongly δ-typical set. − 1
n logP (xn) = 1

n log 1
n∏

i=1
P (xi)

= 1
n

n∑
i=1

log 1
P (xi)

= 1
n

∑
a∈X

N(a|xn) log 1
P (a) =

∑
a∈X

Pxn(a) log 1
P (a) . This is ≈

∑
a∈X

P (a) log 1
P (a) = H(P ) if Pxn ≈ P , i.e. if the empirical distribution induced

by xn is “close” to P , i.e. if the sequence is strongly typical. Thus, P (xn) ≈ P ⇒ − 1
n logP (xn) ≈ H(P ),

i.e. strong typicality implies weak typicality. In the homework, we will show more precisely that

1Optional Reading: Chapter 2 in El Gamal and Kim, Network Information Theory.

1



Tδ(P ) ⊆ Aε(P )

for ε = δ ·H(P ).
Example: Here is an example of a sequence that is weakly typical but not strongly typical. Let P be the
uniform distribution over X , i.e. P (a) = 1

|X | ∀a ∈ X . Then P (xn) = 1
|X |n ⇒ −

1
n log p(xn) = log |X | =

H(P ) ∀xn ∈ Xn. Thus, Aε(P ) = Xn, while Tδ(P ) = {xn :
∣∣∣Pxn(a)− 1

|X |

∣∣∣ ≤ δ
|X | , ∀a ∈ X}. In other words,

the weakly typical set is the set of all sequences over X , whereas the strongly typical set is the set of all
sequences such that each symbol appears roughly the same number of times along the sequence.

We have already shown that the probability of a particular sequence being in Aε(P ) approaches 1 as n→∞.
In the homework, we will investigate the probability of a particular sequence being in Tδ(P ), i.e. P (Tδ(P )).
In fact, this also approaches 1 as n→∞.

lim
n→∞

P (Tδ(P )) = 1

This is also a manifestation of the law of large numbers, which tells us that for every symbol a, the fraction
of times that it appears in a sequence will approach its true probability under the source P , with probability
close to 1. Finally, we will show that the size of the set of strongly δ-typical sequences |Tδ(P )| is roughly
2nH(P ); more precisely, that for all sufficiently large n:

2n[H(P )−ε(δ)] ≤ |Tδ(P )| ≤ 2n[H(P )+ε(δ)] (3)

where ε(δ) → 0 as δ → 0. The lower bound follows from the previously shown fact that any set with
size smaller than 2nH(P ) has vanishing probability. The upper bound simply follows from the fact that
Tδ(P ) ⊆ Aε(P ).

2.2 Joint Typicality

In the following, we refer to the sequences xn = (x1, x2, . . . , xn), xi ∈ X and yn = (y1, y2, . . . , yn), yi ∈ Y,
where X and Y are finite alphabets.

Definition 3. The joint empirical distribution of (xn, yn) is:

Pxn,yn(x, y) =
1

n
N(x, y|xn, yn) (4)

where N(x, y|xn, yn) :=
n∑
i=1

1{xi=x,yi=y}

Definition 4. (xn, yn) is jointly δ-typical with respect to P ∈M(X × Y) if

|Pxn,yn(x, y)− P (x, y)| ≤ δ · P (x, y), ∀x ∈ X , y ∈ Y (5)

where N(x, y|xn, yn) :=
n∑
i=1

1{xi=x,yi=y}

Definition 5. The jointly δ-typical set with respect to P ∈M(X × Y) is

Tδ(P ) = {(xn, yn) : (xn, yn) is jointly δ-typical with respect to P} (6)

where N(x, y|xn, yn) :=
n∑
i=1

1{xi=x,yi=y}
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Observe that these definitions are just special cases of the definitions of the empirical distribution, strong
δ-typicality, and the strongly δ-typical set, since a pair of a sequence in X and a sequence in Y is simply a
sequence in the alphabet of pairs X × Y.

Notation: For convenience, we will sometimes write Tδ(X) in place of Tδ(P ) ,when X ∼ P , or Tδ(X,Y ) in
place of Tδ(P ) when (X,Y ) ∼ P .

In the homework, we will show that ∀g : X → R, xn ∈ Tδ(X),

(1− δ)E[g(X)] ≤ 1

n

n∑
i=1

g(xi) ≤ (1 + δ)E[g(X)]

In other words, for strongly typical sequences, the average value of g computed on the components of the

sequence is “close to” the expected value of g(X). Observe that 1
n

n∑
i=1

g(xi) =
∑
a∈X

Pxn(a) · g(a); the latter

is the expectation of g(X) when X is distributed according to the empirical distribution of Pxn . But since
xn ∈ Tδ(x), Pxn is close to the true PMF of X [i.e. P ], which is why this expectation is close to the
true expectation E[g(X)]. This property will be important for the rate distortion theorem where g will be
replaced by the distortion function. In the homework, you will find cases where this does not hold for weak
typicality.

2.3 Conditional Typicality

Definition 6. Fix xn. The conditional δ-typical set is

Tδ(Y |xn) = {yn : (xn, yn) ∈ Tδ(X,Y )} (7)

In other words, it is the set of all sequences yn such that the pair (xn, yn) is jointly δ-typical.

Observe that if xn 6∈ Tδ(X), then Tδ(Y |xn) = ∅, because for a sequence (xn, yn) to be jointly typical, each
individual sequence must be typical with respect to PX and PY , respectively (shown in homework).
In the homework, we will show that, assuming xn ∈ Tδ′(X),

(1− δ)2n[H(Y |X)−ε(δ)] ≤ |Tδ(Y |xn)| ≤ 2n[H(Y |X)+ε(δ)]

for all 0 < δ′ < δ and n sufficiently large, where ε(δ) = δ ·H(Y |X).
In short, for a sequence xn that is typical, the number of sequences yn that are jointly typical with xn is
approximately 2nH(Y |X). A starting point of the proof will be the “Conditional Typicality Lemma.”

Lemma 7 (Conditional Typicality Lemma). For 0 < δ′ < δ, xn ∈ Tδ′(X) and Y n ∼ P (yn|xn) =
n∏
i=1

PY |X(yi|xi), then

lim
n→∞

P (Y n ∈ Tδ(Y |xn)) = 1 (8)

In other words, we fix an individual sequence xn, and generate the sequence Y n stochastically and indepen-
dently according to the distribution conditioned on xn, i.e. we generate Yi ∼ PY |X=xi

, [according to the joint
probability mass function PX,Y , which gives rise to the conditional probability mass function PY |X ]. One
can think of this in communication terminology: the sequence Y n is generated is by taking the individual
sequence xn and passing it through the memoryless channel P (Y |X). The probability that the sequence Y n

thus generated is conditionally typical approaches 1 as n becomes large.
To prove the conditional typicality lemma, we will employ the fact [to be proved earlier in the homework]

that P (Tδ(P ))
n→∞→ 1. Fix some a ∈ X , and consider the subsequence of all components xi in xn that
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are equal to a. Consider the subsequence of yi’s corresponding to the same indices. This subsequence is
generated IID from the PMF PY |X=a. We will apply the aforementioned result separately to each such
subsequence corresponding to a symbol in a ∈ X .
To prove the bounds on the size of |Tδ(Y |xn)|, we will take a similar approach: we will use Equation (3)
[which will also be proved earlier in the homework] and apply it to each subsequence associated with a
symbol a ∈ X .
We can interpret the Conditional Typicality Lemma qualitatively with the help of the following pictures:
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Figure 1: Illustration of the relationships between strongly δ-typical and conditionally δ-typical sets

The dashed line denotes that, given channel input xn, the channel output will fall within the dark gray set
Tδ(Y |xn) with high probability. Tδ(Y |xn) can be thought of the “noise ball” around the particular channel
input sequence xn. Recall that in lecture 11, we used this to give intuition for the channel coding converse.

Lemma 8 (Joint Typicality Lemma). ∀ 0 < δ′ < δ, if Ỹi IID ∼ Y , then for all n sufficiently large and
xn ∈ Tδ′(X),

2−n[I(X;Y )+ε̃(δ)] ≤ P (Ỹ n ∈ Tδ(Y |xn)) ≤ 2−n[I(X;Y )−ε̃(δ)] (9)

where ε̃(δ)→ 0 as δ → 0.

The proof of the Joint Typicality Lemma will also be a homework problem. Intuitively speaking, since the
sequence Ỹ n is generated IID with respect to Y , on an exponential scale it is roughly uniformly distributed
over the set Tδ(Y ). Thus, the probability that the sequence falls within Tδ(Y |xn) for some particular xn is,
on an exponential scale, roughly the ratio of the size of this set to the size of Tδ(Y ), since Tδ(Y |xn) ⊆ Tδ(Y ).
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Again, refer to Figure 1 for a visual aid. So, P (Ỹ n ∈ Tδ(Y |Xn)) ≈ 2nH(Y |X)

2nH(Y )
= 2−nI(X;Y ). So, the

probability that a randomly generated sequence Ỹ n “looks” jointly typical with a particular sequence xn is
exponentially unlikely.

In the next lecture, we will see why these notions are significant in the context of lossy compression. We will
use them to prove the main achievability result of lossy compression.
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