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Lecture 16: Strongly Typical Sequences and Rate Distortion
Lecturer: Tsachy Weissman Scribe: Evan Huang, Ariana Mann, Jae Hyuck Park

In this lecture, we review the definition for strong typicality and the joint-typicality lemma. Returning to
the compression setting, we apply the joint-typicality lemma to design a general optimal scheme for lossy
compression, and use this to illustrate the proof for the direct part of the main theorem of rate distortion
theory.

1 Recap of the Strongly δ-Typical Set

An informal recap of previously discussed terms:

1. Tδ(X) = set of sequences xn whose empirical distribution is close to pmf of X

2. Tδ(X,Y ) = set of pairs of sequences (xn, yn) whose joint empirical distribution is close to the joint
pmf of (X,Y )

3. Tδ(Y |xn) = set of sequences yn whose joint empirical distribution with xn is close to joint pmf of
(X,Y )

And respective sizes of these sets:

1. |Tδ(X)| ≈ 2nH(X)

2. |Tδ(X,Y )| ≈ 2nH(X,Y )

3. |Tδ(Y |xn)| ≈ 2nH(Y |X) for xn ∈ Tδ(X)

Now we can look at the probability of randomly generated, iid sequences being in each of these sets. If
we generate Xi iid ∼ X, then the random sequence Xn is typical by the Law of Large Numbers,

Pr (Xn ∈ Tδ(X)) ≈ 1. (1)

If a specific, δ-typical xn is fed into a memoryless channel characterized by PY |X to generate the stochastic
channel output sequence Y n, ie. xn −→ P (Y |X) −→ Y n, then Y n is in the conditional δ-typical set Tδ(Y |xn),

Pr (Y n ∈ Tδ(Y |xn)) ≈ 1,∀xn ∈ Tδ(X). (2)

Joint-Typicality Lemma: Finally we saw that for Ỹi iid ∼ Y , the probability of the sequence Ỹ n

falling into the conditional δ-typical set given the input xn is exponentially unlikely. That is, it is unlikely
that any iid randomly generated sequence will look like the response of a channel to a particular input xn.
The probability can be described as a function of the mutual information between X and Y ,

Pr
(
Ỹ n ∈ Tδ(Y |xn)

)
≈ 2−nI(X;Y ). (3)

By (1), Ỹ n ∈ Tδ(Y ), so then the probability that it falls into the smaller subset Tδ(Y |xn) of that region is
small. Furthermore, we can express this approximation as a ratio:

2−nI(X;Y ) =
2nH(Y |X)

2nH(Y )
≈ |Tδ(Y |x

n)|
|Tδ(Y )|

(4)
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Recall from Lecture 10, that given X̃i iid ∼ X and Ỹi iid ∼ Y generated independently, the probability
they look jointly typical according to the notion of weak typicality is,

Pr
(

(X̃i
n
, Ỹi

n
) ∈ A(n)

e (X,Y )
)
≈ 2−nI(X;Y ) (5)

This result is also true for the notion strong typicality and follows from Sanov’s theorem. The Method of
Types tells us that the probability that for (X̃i

n
, Ỹi

n
) generated iid ∼ QX,Y looks like the joint empirical

distribution P is 2−nD(P ||Q) (in this case, P is the joint distribution and Q is the product of the marginals).
Thus:

Pr
(

(X̃i
n
, Ỹi

n
) ∈ Tδ(X,Y )

)
≈ 2−nD(PXY ||PX×PY ) (6)

= 2−nI(X;Y ) (7)

An alternative way to get this result without using Sanov’s:

Pr
(

(X̃i
n
, Ỹi

n
) ∈ Tδ(X,Y )

)
≈ Pr

(
X̃i

n ∈ Tδ(X)
)
× Pr

(
Ỹi
n ∈ Tδ(Y |X̃n) | X̃n ∈ Tδ(X)

)
(8)

≈ 1× 2−nI(X;Y ) (9)

= 2−nI(X;Y ) (10)

The idea is that the first requirement Pr(X̃i
n ∈ Tδ(X)) will cost nothing, being about 1 according to (1).

2 δ-Typicality in the Compression Setting

In the compression setting, let U be a random variable according to the source distribution and let V be the
reconstruction random variable that is associated with mutual information minimization that characterizes
the rate distortion function R(D). Suppose (U, V ) are generated according to their a joint pmf PU,V . In this
section, we apply the results we got from the previous section.

Figure 1: Conditionally typical set Tdelta(V |un)

In Figure 1, Un denotes the set of all possible source sequences of length n and Vn denotes the set of
all possible reconstructions. For a particular source sequence un ∈ Tδ(U) from the set of typical source
sequences, the conditionally typical set Tδ(V |un) is the set of all typical sequences vn that are jointly typical
with un. According to the Joint Typicality Lemma (3), if we generate an iid sequence Vi ∼ V , then the
probability that it belongs to the conditional typical set is,

Pr(V n ∈ Tδ(V |un)) ≈ 2−nI(U ;V ) (11)

which is exponentially small. However, if we independently generate 2nI(U ;V ) random V n’s, at least one will
fall in Tδ(V |un) with high probability.
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Note: If (un, vn) ∈ Tδ(U, V ), then

1

n

n∑
i1

d(ui, vi) ≈ E[d(U, V )]. (12)

We will use this argument to guarantee that for any source sequence you care about, there is some sequence
in a randomly generated codebook of the appropriate size that is jointly typical with it. Therefore the
distortion between the source and reconstruction sequences will be roughly the distortion between the generic
pair (U, V ).

3 Lossy Compression and R(D)

Figure 2: Scheme

A scheme is characterized by: (n,M,Encoder,Decoder) where

• n is the length of the source sequence

• M = 2m is the size of the index set or the number of bits you will use to represent a source n-tuple.

Communicating m bits is equivalent to 2m possible messages so using m bits to represent the data is
equivalent to conveying an index set of M = 2m indices. We can think of the encoder as having an output
J ∈ {1, 2, . . . ,M}. Then the rate of the scheme is

Rate =
logM

n

bits

source sequence
. (13)

We use the notation

d(un, vn) =
1

n

n∑
i=1

d(ui, vi). (14)

Note 1. The decoder maps an index to a reconstruction. Therefore, specifying a decoder is equivalent to
specifying a codebook cn = {vn(1), . . . , vn(M)}.

Note 2. Without loss of optimality, we can assume

d(Un, V n(J)) = min
vn∈cn

d(Un, vn). (15)

i.e., the encoder is the optimal encoder for the given codebook. The encoder will output the index in the
codebook that is closest under the relevant distortion criteria to the source sequence. That will lead to the
smallest distortion with an optimal expected per-symbol distortion of

expected dist(cn) = E
[

min
vn∈cn

d(Un, vn)

]
. (16)
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4 Rate Distortion Theory

Reviewing the key definitions for rate distortion theory:

• (R,D) is achievable if ∀ε ∃n, cn such that |cn| ≤ 2n(R+ε) and expected dist(cn) ≤ D + ε.

• R(D) = inf{R′ : (R′, D) is achievable}

• Theorem: R(D) = min
E[d(U,V )]≤D

I(U ;V ) = R(I)(D)

The above theorem is equivalent to:

• Converse: R(D) ≥ R(I)(D)

• Direct: R(D) ≤ R(I)(D)

The Direct Part of the the theorem can then be reframed as follows:

If U, V are such that E[d(U, V )] ≤ D and R > I(U ;V ), then (R,D) is achievable. (17)

If U ,V is a feasible set for minimization, then any value for I(U ;V ) in the feasible set (defined as E[d(U, V )] ≤
D) is achievable and any rate R > I(U ;V ) is such that (R,D) is achievable. Therefore the minimum of
I(U ;V ) in the feasible set is achievable and that minimizing pair (U, V ) can be chosen.

4.1 Sketch of the Proof for the Direct Part

A rigorous proof of the following is in the class notes from 2016 on page 62.

The setup is as follows:

• Fix U, V such that E[d(U, V )] ≤ D

• Fix R > I(U ;V )

• Take M = 2nR, where M = |Cn| and is therefore � 2nI(U ;V )

• Generate a random codebook Cn = {V n(1), V n(2), ..., V n(M)}, with V n(i) generated iid ∼ V

• Fix un for any un ∈ Tδ(U)

Recall that for a δ-typical un the probability that V n is jointly typical is given by the Jointly Typical
Lemma (Equation 3),

Pr ((un, V n(j)) ∈ Tδ(U, V )) ≈ 2−nI(U ;V ) ∀ 1 ≤ j ≤M. (18)

Since there are M = 2nR � 2nI(U ;V ) j’s, then with high probability one of the j’s is jointly typical with un.
This leads to the following results with high probability:

Pr ((un, V n(j)) ∈ Tδ(U, V ) for some 1 ≤ j ≤M) ≈ 1 (19)

⇒Pr (d(un, V n(j)) ≤ D for some 1 ≤ j ≤M) ≈ 1 (20)

⇒Pr

(
min

V n∈Cn

d(un, V n) ≤ D
)
≈ 1 (21)
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This is all true conditioned on a fixed un ∈ Tδ(U), but in all likelihood Un ∈ Tδ(U). This leads to the
conclusions that:

Pr

(
min
vn∈Cn

d(Un, vn) ≤ D
)
≈ 1 (22)

E[ min
vn∈Cn

d(Un, vn)] ≤ D (23)

Therefore, we can extract one particular codebook, ie. ∃cn such that:

|cn| = M = 2nR (24)

expected dist(cn) = E[ min
vn∈Cn

d(Un, vn)] ≤ D (25)

⇒ (R,D) is achievable (26)

In conclusion, if we generate Cn randomly and generate > 2nI(U ;V ) V n reconstructions randomly, then with
high probability one of the reconstructions will be jointly typical with the input and hence consistent with
the distortion criterion.
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