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In this lecture, we will review the concepts of joint source-channel coding and give an example of Gaussian
source and Gaussian channel. We will also discuss an application of information theory to machine learning.

1 Review of Joint Source-Channel Coding (JSCC)

A quick summary of the concepts

1. The model:

Figure 1: JSCC Problem Schematic

2. Rate: rate = N
n

source symbols
channel use

3. Distortion: E[d(UN , V N )]

4. Achievability: (ρ,D) is achievable if ∀ε > 0, ∃schemes with N
n ≥ ρ− ε and E[d(UN , V N )] ≤ D + ε

5. ”Source-channel Separation” theorem: (ρ,D) is achievable if and only if ρR(D) ≤ C.

Figure 2: Example Rate Distortion Curve
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2 Example: Gaussian source & Gaussian channel

Last class we gave an example of binary source & binary channel, this class we will introduce an example of
Gaussian source: U ∼ N (0, σ2) and AWGN channel with transmission power constraint P, the distortion of
which is defined as squared error.

Figure 3: AWGN Channel

Recall: R(D) = 1
2 logσ

2

D , 0 < D ≤ σ2. C = 1
2 log(1 + P).

Then, by JSCC we get

Figure 4: Rate-Distortion Curve for AWGN Channel

Observe that zero distortion is not possible for any positive rate since the source is continuous valued.

Consider the following scheme:
Rate: ρ = 1;

Transmit: Xi =
√

P
σ2Ui (here we rescale Ui because the power of Xi is constrained by P; however,

var(U) = σ2. In order to satisfy the power constraint, we rescale Ui to get Xi);

Receive: Yi = Xi + Zi =
√

P
σ2Ui + Zi;

Reconstruction: Vi = E[Ui|Yi] =

√
P/σ2σ2

(
√

P/σ2)2σ2+1
Yi.
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Expected distortion achieved: E[(Ui − Vi)2] = σ2

(
√

P/σ2)2σ2+1
= σ2

1+P

As can be seen, this simple scheme gives the optimum solution. This ‘simple scheme’ is rather an
exception and typically we need non-trivial coding effort when ρ 6= 1 in this case and even for ρ = 1 with
general sources and channels. This is illustrated by the following exercise:

Consider the following “symbol-by-symbol” scheme for ρ = 1:
Transmit: Xi = f(Ui);
Reconstruction: Vi = g(Yi).
Exercise: for a memoryless source & channel, the symbol-by-symbol scheme is optimal if g(·) is
one-to-one (injective) and I(U ;V ) achieves min

E[d(U,V )]≤D
I(U ;V ) and I(X;Y ) achieves max

P (X | Y )
I(X;Y )

under the joint distribution of (U,X, Y, V ) when X = f(U) and V = g(Y ).
Proof Sketch:
Here we have a Markov Chain: U −X − Y − Z
Then, by the properties of Markov Chain I(U ;Y ) ≤ I(X;Y ), but since X = f(U), we also have
by data-processing inequality that I(X;Y ) = I(f(U);Y ) ≤ I(U ;Y ) and hence we have I(X;Y ) =
I(U ;Y ). Now, by using that g(·) is a one-to-one function, we also have I(U ;V ) = I(U ; g(Y )) =
I(U ;Y ). Thus, we have shown that given conditions imply that I(U ;V ) = I(X;Y ). But, based on
the conditions in the optimization problem given above, and by our formulations of Channel Coding
Theorem and Rate Distortion, we can identify I(X;Y ) = C and I(U ;V ) = R(D). Thus, for these

set of conditions, we know by JSSC that there exist a scheme with ρ = C
R(D) = I(X;Y )

I(U ;V ) = 1 which is

optimal. Thus, these conditions are sufficient for an optimal “symbol-by-symbol” scheme.

You can apply this exercise and see for yourself that the these conditions exist for both (Binary Source,
Binary Channel) example as well as (Gaussian Source, Gaussian Channel) example. For instance, in the
second case, we saw above that the “simple scheme” is optimal. For this simple scheme, X = f(U) =√

P
σ2U and X ∼ N (0,P), but remember that we have already shown that for Gaussian channel C is achieved

when X ∼ N (0,P), that is, X = f(U) in our scheme indeed maximizes I(X;Y ). Similarly, all other relations
can be established in the two examples.

3 Application of information theory to machine learning

We briefly discuss the application of information theory to machine learning here. For the details of this
part, one can refer to the slides: information theory, graphical models and decision trees on the website.

In machine learning problems, usually we are given training data (X1, Y1), (X2, Y2), · · · , (Xn, Yn), where
Xi ∈ Rd is the feature vector, Yi is some label. Our task is to predict Yi for Xi that we encounter in future.
There are two general approaches for this:

• Decision theoretic approach (a.k.a. generative models): learn a probabilistic model of the joint distri-
bution PXY , and then output the most probable label Yi given Xi under our learned model.

• Learning theoretic approach (a.k.a discriminative model): directly learn a prediction function f(X)
with the aim that E[L(f(X), Y )] is small. Here L denotes the loss function which quantifies how far
off is our prediction f(X) from Y .

Now, we discuss a decision theoretic approach that relies on mutual information. For simplicity, let’s
consider the problem where one gets n i.i.d. samples x1, x2, · · · , xn from distribution PX for xi ∈ Rd. Given
these samples, we want to estimate PX . One way to do this is by finding a probability distribution Q
that maximizes the probability of observing (x1, x2, · · · , xn). In a previous lecture on method of types, we

observed that Q(x1, x2, · · · , xn) = 2−n(H(P̂ )+D(P̂ ||Q)) where P̂ represents the empirical distribution of the
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observed sequence. The Q that maximizes this is the empirical distribution P̂ itself. But this is the case
when we allow the set of possible Q’s to be all the distributions.

Generally, we assume a model (restricted set of distributions) from where Q comes. In this case, our
model assumes that Q either factorizes as a tree graphical model, or is reasonably well approximated by one
(note that there are plenty of results to suggest that this should be true in most cases). Graphical models
are a way to represent the dependencies between various random variables, allowing us to specify one initial
distribution and then only conditional distributions for the other (dependent) variables. For more details
about them, refer to the slides. Our model doesn’t put any restriction on which set of edges are present in
the tree. Some calculations (present in the slides) show that the tree that maximizes Q(x1, x2, · · · , xn) is the
maximum weight spanning tree of the complete graph (all edges present) on d vertices (as xi ∈ Rd) where
the edge weight between two vertices is equal to the empirical mutual information between them. Although
the total number of spanning trees of a complete graph is huge, there exist fast (quadratic time) algorithms
for finding the maximum weight spanning trees (for example, Kruskal’s algorithm or Prim’s algorithm). In
the next lecture, we will discuss this in more detail.
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