IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020 39

Deep Learning Techniques for Inverse
Problems in Imaging

Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk,
Alexandros G. Dimakis, and Rebecca Willett

Abstract—Recent work in machine learning shows that deep
neural networks can be used to solve a wide variety of inverse
problems arising in computational imaging. We explore the cen-
tral prevailing themes of this emerging area and present a
taxonomy that can be used to categorize different problems and
reconstruction methods. Our taxonomy is organized along two
central axes: (1) whether or not a forward model is known and
to what extent it is used in training and testing, and (2) whether
or not the learning is supervised or unsupervised, i.e., whether or
not the training relies on access to matched ground truth image
and measurement pairs. We also discuss the tradeoffs associated
with these different reconstruction approaches, caveats and com-
mon failure modes, plus open problems and avenues for future
work.

Index Terms—Machine learning, deep neural networks, inverse
problems, computational imaging, image restoration, image
reconstruction.

I. INTRODUCTION

HIS paper concerns inverse problems, i.e., reconstruct-
Ting an unknown signal, image, or multi-dimensional
volume from observations. The observations are obtained
from the unknown data by a forward process, which is
typically non-invertible. Numerous imaging tasks fit under
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this framework, including image deblurring, deconvolution,
inpainting, compressed sensing, superresolution, and many
more. These forward processes are ill-posed, so reconstruct-
ing a unique solution that fits the observations is difficult
or impossible without some prior knowledge about the data.
Traditional methods minimize a cost function that consists of
a data-fit term, which measures how well the reconstructed
image matches the observations, and a regularizer, which
reflects prior knowledge and promotes images with desirable
properties like smoothness. Deep learning techniques are cur-
rently transforming image reconstruction methods and impact
applications ranging from geophysical, scientific and medi-
cal imaging. We provide an overview of this rapidly evolving
landscape.

To be more precise, we consider inverse problems in which
an unknown n-pixel image (in vectorized form) x* € R” (or
C™) is observed via m noisy measurements y € R” (or C™)
according to the model

y=Ax") +e,

where A is the (possibly nonlinear) forward measurement
operator and e represents a vector of noise. The goal is
to recover x* from y. More generally, we can consider
non-additive noise models of the form

y =N(AxY),

where N(-) samples from a noisy distribution. Without loss
of generality, we assume that y, x*, A, are real-valued, since
most techniques presented in this paper can be generalized to
complex-valued images/measurements by concatenating real
and imaginary parts.

This general model is used throughout computational imag-
ing[1], from basic restoration tasks like deblurring, super-
resolution, and image inpainting [2], to a wide variety of tomo-
graphic imaging applications, including magnetic resonance
imaging [3], X-ray computed tomography [4], and radar imag-
ing [5]. The task of estimating x* from y is often referred to as
image reconstruction. Classical image reconstruction methods
assume some prior knowledge about x* such as smooth-
ness [6], sparsity in some dictionary or basis [7]-[10], or
other geometric properties [11]-[15]. Reconstruction amounts
to finding an x that is both a good fit to the observations y
and also likely given the prior knowledge. A regularization
function r(x) measures the lack of conformity of x to a prior
model and X is selected so that r(x) is as small as possible
while still fitting the observed data.
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Fig. 1.

Undersampled MRI reconstruction. Undersampled multi-coil MRI reconstruction using least-squares reconstruction, total generalized variation

regularization, and a deep learning approach. SSIM quality measures are displayed in white. This example highlights the potential of learned methods of
image reconstruction over more conventional techniques. Figures adapted from [27].

LED Array
Microscope

Fig. 2. Microscopy with learned illumination patterns. Differentiable optical models and reconstruction algorithms are used to design illumination patterns

(bottom row) for Fourier ptychographic microscopy. Figures adapted from [40].

Recent work in machine learning has demonstrated that
deep neural networks can leverage large collections of train-
ing data to directly compute regularized reconstructions across
a host of computational imaging tasks [16]-[24]. In parallel,
work on unsupervised methods showed how deep generative
models can regularize by constraining the reconstructed image
X to remain on a learned manifold [25]. We explore the central
prevailing themes of this emerging area and present a taxon-
omy that can be used to categorize different problems and
reconstruction methods. We also discuss the tradeoffs asso-
ciated with different reconstruction approaches and describe
avenues for future work.

II. OPPORTUNITIES AND RECENT PROGRESS

In the last five years deep learning has demonstrated
enormous potential for solving a host of imaging inverse prob-
lems; see [26]. However, a fundamental understanding of the
applicability of deep learning methods and their limitations
remains in its infancy. This creates opportunity for addi-
tional research, careful scientific evaluation, and foundational
understanding.

A. Medical Imaging

Reconstructing
arises in MRI,

images from projective measurements
CT, PET, SPECT, and many other

modalities. Classical methods perform well but can be
computationally demanding. Recent work on using train-
ing data to improve the reconstruction process can
lead to better image quality and orders of magni-
tude faster reconstructions than classical iterative meth-
ods. The potential gains are illustrated in Figure 1 and
an excellent overview was recently published [27]. GE’s
“TrueFidelity” deep learning image reconstruction for CT
imaging [28] has FDA approval as of April 2019 [29].
Nevertheless, numerous open questions remain, as described
in Section VI.

B. Computational Photography

The goal of computational photography is to create visually
appealing images that are reasonably faitful to the scenes they
represent. These conditions make deep learning an excellent
candidate for computational photography reconstruction prob-
lems. For example, deep learning enables exceptional low-light
imaging [30], as shown in Figure 3. Deep learning also enables
estimating the depths of different objects in a scence from a
photograph [31], as illustrated in Figure 4. Presently, deep
learning is used to perform white balancing in the produc-
tion version of Google’s latest smart phone imaging systems
[32], [33].
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(a) Camera output with ISO 8,000

Fig. 3.

(b) Camera output with ISO 409,600

(c) Our result from the raw data of (a)

Low-light imaging. A network takes an underexposed image (left) and denoises and white balances it to produce a clean image (right) that does

not exhibit the color bias associated with extreme ISO images (middle). Figures adapted from [30].

Fig. 4. Monocular depth estimation. A network takes an image (left) and produces a depth map (right). Figures adapted from [31].
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Fig. 5.
(middle). Figures adapted from [52].

C. Computational Microscopy

With the growing popularity of computational techniques
like ptychography, solving a reconstruction problem has
become an integral part of microscopy. Accordingly, there
has been a surge of interest in applying deep learning to
microscopy, producing new techniques to both reconstruct
images and design a microscope’s illumination patterns and
optical elements [34]-[40].

D. Geophysical Imaging

Seismic inversion and imaging involves reconstructing the
Earth’s interior by modeling the physical propagation of
seismic waves. The comparison of simulated synthetic mea-
surements to actual acoustic recordings of reflected waves can
be used to tune the models of these ill-posed inverse prob-
lems. Deep learning techniques have been recently proposed
to tackle these problems [41], [42], including methods that rely
on generative models [43] constrained by partial differential
equations; see also [44].

E. Other Computational Imaging Applications

While still in the development stages, deep learning
has shown immense promise in many other challenging

—

Imaging around corners. In deep-inverse correlography, deep learning is used to reconstruct a hidden object (right) from a series of speckle images

computational inverse problems, including lensless imag-
ing [45], holography [46], [47], ghost imaging [48], imag-
ing through scattering media [49]-[51], and non-line-of-sight
imaging [52], which is illustrated in Figure 5. See [53] for a
recent optics-focused review article.

III. ANATOMY OF AN INVERSE PROBLEM

Recall that we are interested in recovering a vectorized
image x € R"” from measurements y € R™ of the form
y = Ax) + &, where A is the (possibly nonlinear) forward
measurement operator and & represents noise. Alternatively,
the system can be represented by y = N (A(x)), where NV (-)
samples from a noisy distribution.

If the distribution of the noise is known, solving a maximum
likelihood (ML) estimation problem can recover x:

XML = arg max p(y|x) = arg min — log p(y|x),
X X

where p(y|x) is the likelihood of observing y if x were the
true underlying image. (Knowledge of 4 or integration over
a distribution of possible A’s is implied in this formulation.)
The maximum likelihood approach has some significant draw-
backs, including potentially non-unique solutions (e.g., when
A is a linear operator with rank less than n) or high sensitivity
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TABLE I
EXAMPLES OF INVERSE PROBLEMS IN IMAGING

Application " Forward model

Denoising [58] A=1

Deconvolution Alx) =hx*xz

[58,59]

Superresolution A=5B

[60,61]

Inpainting [62] A=S

Compressive A = SFo A =

Sensing [63, 64] Gaussian or Bernoulli
ensemble

MRI [3] A=SFD

Computed tomog- A =R

raphy [58]

Phase Re- A(z) = |Azx|?

trieval [67-70]

to noise (e.g., when the spectrum of A is not bounded below;
in the case where A is the linear operator A, this corresponds
to some eigenvalues of ATA being small).

In some settings, one might have prior knowledge about
which x are more likely; for instance, we might expect x to
be smooth, or be smooth away from edges and boundaries.
Such knowledge can be codified into a prior distribution for
x, leading to a maximum a posteriori (MAP) estimate

Xmap = argmax p(xly) = arg max p(y|x)p(x)
X X

argmin — Inp(y|x) — Inp(x).
X

For the special case of additive white Gaussian noise, the MAP
formulation leads to
arg min 5 [|AC) = y[13 + r(), (1)
X
where r(x) is proportional to the negative log-prior of x.
Examples of this framework include Tikhonov regulariza-
tion [54], sparsity regularization in some basis or frame [55],
[56], and total variation regularization [11], [57]. In some
settings, MAP estimation with underdetermined A(-) can be
considered an algorithmic procedure for choosing, among the
infinitely many values of x that satisfy y = A(x), the one that
is most likely under the prior.
While in principle MAP estimation can be used to solve
most image reconstruction problems, difficulties arise when

1 is the identity matrix

h is a known blur kernel and * denotes convo-
Iution. When h is unknown the reconstruction
problem is known as blind deconvolution.

S is a subsampling operator (identity matrix
with missing rows) and B is a blurring operator
cooresponding to convolution with a blur kernel
S is a diagonal matrix where S; ; = 1 for the pix-
els that are sampled and S;; = 0 for the pixels
that are not.

S is a subsampling operator (identity matrix with
missing rows) and F' discrete Fourier transform
matrix.

S'is a subsampling operator (identity matrix with
missing rows), F' is the discrete Fourier trans-
form matrix, and D is a diagonal matrix rep-
resenting a spatial domain multiplication with
the coil sensitivity map (assuming a single coil
aquisition with Cartesian sampling in a SENSE
framework [65]).

R is the discrete Radon transform [66].

|-| denotes the absolute value, the square is taken
elementwise, and A is a (potentially complex-
valued) measurement matrix that depends on the
application. The measurement matrix A is often
a variation on a discrete Fourier transform ma-
trix.

(1) the statistics of the noise are not known, (2) the distribu-
tion of the signal is not known or the log-likelihood does not
have a closed form, or (3) the forward operator is not known
or only partially known. In the last five years, machine learn-
ing has provided machinery to (partially) overcome many of
these issues. Variations on the aforementioned inverse problem
appear in a range of imaging settings. We highlight a few
prominent examples in Table I.

A. Supervised vs. Unsupervised Inversion

We start by explaining a central dichotomy in the litera-
ture and in our proposed taxonomy of approaches to inverse
problems. The first (and most well-known) family of deep
learning inversion methods use what we call supervised inver-
sions. The central idea is to create a matched dataset of ground
truth images x and corresponding measurements y, which can
be done by simulating (or physically implementing) the for-
ward operator on clean data, i.e., measure them. Subsequently,
one can train a network that takes in measurements y and
reconstructs the image x, i.e., learns an inverse mapping. Such
supervised methods typically perform very well, but are sen-
sitive to changes or uncertainty to the forward operator A. In
addition, a new network needs to be trained every time the
measurement process changes.

The second family of techniques we cover are unsuper-
vised, i.e., do not rely on a matched dataset of images x and
measurements y. In our taxonomy we separate unsupervised
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Fig. 6. A deep generative model is a function G(z) that takes a low-dimensional random vector z in RF and produces a high-dimensional sample G(z) € R".
In the example shown in the figure, the generator G : R — R? learns to map low-dimensional samples z (blue dots) drawn from a uniform distribution (blue
line), such that the distribution of G(z) (green dots) resembles the distribution of training samples (red dots). While the output of this simple generative model
lies in RZ, modern deep generative models are capable of generating images with millions of pixels. The low dimensional samples are typically drawn from a
distribution which is easy to sample from, such as i.i.d. Gaussian or uniform distributions. Furthermore, the function is usually a convolutional neural network

and is therefore continuous and differentiable almost everywhere.

methods into three different kinds: (1) methods which use
unpaired ground truth images x’s and measurements y’s,
(2) methods which leverage ground truth images x’s only, and
(3) methods which use only measurements y’s.

B. Background on Deep Generative Models

A central challenge in the foundations of learning is suc-
cinctly modeling high-dimensional distributions in a way
that permits efficient learning and inference. Simply put, the
difficulty is that representing a general joint probability dis-
tribution over n variables, even for binary random variables,
requires 2" — 1 parameters. Therefore, we must postulate
some type of structure on the data to overcome its worst-case
complexity.

Previous efforts towards this goal have been at the heart of
substantial breakthroughs. For example, in compressed sens-
ing and high-dimensional statistics, the notion of sparsity
and low-rank are key structural assumptions in many prior
works. Sparsity (e.g., in Discrete Cosine Transform (DCT)
or wavelet domains) plays the central role in most lossy
compression standards like JPEG [71], JPEG-2000 [72] and
MPEG [73]. Another successful example is graphical models:
in this case a high dimensional distribution becomes tractable
through factorization, which is equivalent to conditional inde-
pendence. For Bayesian networks and undirected graphical
models there is a rich theory for both learning and inference
including precise conditions under which structure learning
can be achieved efficiently.

Here, we are interested in a different way of modeling high-
dimensional distributions: Deep Generative Models (DGMs).
DGMs represent a complex distribution using a determin-
istic transformation applied to a simple “seed” distribution
(e.g., independent Gaussian). Formally, a DGM is described
by a function G : R¥ — R” parametrized by a deep neural
network (typically convolutional) that is trained from actual
data in an unsupervised way. Two primary DGM examples
are Variational Auto-Encoders (VAEs) [74] and Generative
Adversarial Networks (GANs) [75]. DGMs are demonstrat-
ing unprecedented visual results for image generation, but

many central theoretical questions about them remain poorly
understood. We will discuss how DGMs can be used as pri-
ors for inverse problems [25], [76], [77]. Figure 6 provides
an illustrative example of a deep generative model that maps
from R — R2.

IV. TAXONOMY FOR LEARNING TO SOLVE
INVERSE PROBLEMS

In recent years there has been an emerging body of literature
on using training data to solve inverse problems in imaging.
Some methods use the MAP formulation, seen in Equation (1)
as a starting point and attempt to learn the regularizer r or
some functional of r, while others attempt to directly learn a
mapping from measurements y to images X. In this section, we
describe a taxonomy for these approaches that facilitates an
easier comparison among different methods and a better under-
standing of the tradeoffs among them. The overall taxonomy
is shown in Table II and details are described below.

Computational imaging techniques often rely on a forward
model A, i.e., a computational model of the physics underlying
the measurement process. A key distinction between many
types of learned inverse problem solvers is what is known
when about the forward model. Options include:

o A is known from the beginning (i.e., even during the
training process). Examples include the discrete Radon
and X-ray transforms in computed tomography, and
the discrete Fourier transform in magnetic resonance
imaging.

o A is not known during training, but after training may
be used at test time (i.e., during the reconstruction pro-
cess). This framework is useful for training a general
purpose model that can be “plugged in” to a variety of
reconstruction tasks.

o A is partially known. For instance, it might rely on
calibration parameters that are unknown or difficult to
estimate, as is the case in blind deconvolution problems
encountered in optical imaging.

o A is never known or modeled. In this case, all information
about A is represented in the training data.
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TABLE II
MAJOR CATEGORIES OF METHODS LEARNING TO SOLVE INVERSE PROBLEMS BASED ON WHAT IS KNOWN ABOUT THE FORWARD MODEL .4 AND THE
NATURE OF THE TRAINING DATA, WITH EXAMPLES FOR EACH. DETAILS ARE DESCRIBED THROUGHOUT SECTION IV

Train

Supervised with
matched
pairs

(z,y)

paired
truths

Measurements)

unpaired
and y’s

Train from x’s
only (Ground
truth only)

from Train from y’s
only (Measure-

ments only)

z’s
(Un-
ground
and

A fully known EYNHNH De- | amounts to | amounts to | §4.1.2: SURE
GUTGUTRRG C Tl noising  auto- | training  from | training  from | LDAMP
and testing (§4.1) encoders [16], | (z,y) pairs (z,y) pairs [85, 86],
U-Net [78], Deep Basis
Deep con- Pursuit [87]
volutional
framelets [79]
Unrolled
optimiza-
tion [80-83],
Neumann
networks [84]
A known only at [N §4.2.2 84.2.1: 84.2.2
test time (§4.2) CSGM [25],
LDAMP [88],
OneNet [22],
Plug-and-
play [89],
RED [90]
A partially known RZNH! 84.3.2: Cycle- | §4.3.3:  Blind | §4.3.4:  Ambi-
(54.3) GAN [91] deconvolu- entGAN  [76],
tion with | Noise2Noise
GAN’s [92-94] | [95], UAIR [96]
A unknown (§4.4) RIE¥NE AU- | 6442 84.4.2 84.4.2
TOMAP [97]

Each of these settings requires different methods and analy-
ses; we elaborate below. If an accurate forward model is known
— even partially — then one might argue it should be used
during training so that parameters are not wasted on “learn-
ing the physics”. Indeed, several studies show that making
effective use of forward models in training and testing dra-
matically reduces the sample complexity of learning-based
image reconstruction. However, even if the forward model is
known, it may be computationally prohibitive to apply. This
becomes especially problematic in the training phase, where
each backpropagation step may require multiple applications
of the forward model or its adjoint. In this case, reconstruc-
tion architectures need to be carefully designed to reduce the
number of applications the forward model or its adjoint.

A. Forward Model Fully Known During Training and Testing

When the forward model A is fully known,' a wide vari-
ety of deep learning techniques can be employed to solve
the inverse problem of interest. Here we will focus on the
supervised setting where one has access to ground truth
image/measurement pairs. We do not lose too much gener-
ality in our discussion by focusing on the supervised setting,

THere we assume we know the “true” .A and not an approximation; issues
related to only approximately knowing A are discussed in Section VL

since in unsupervised settings where one has access to ground
truth images it is trivial to generate training pairs by apply-
ing the known forward model. However, the unsupervised
setting where one only has access to (noisy) measurements
requires novel techniques, which we address below. Finally, in
Section VII we also discuss cases where one also has control
over the design of A.

1) Train From (x,y) Pairs (Paired Ground Truth and
Measurements): The goal in a supervised setting is to esti-
mate a reconstruction network fy(-) that maps measurements y
to images x, where 6 is a vector of parameters to be estimated
from training data (e.g., neural network weights). Different
deep learning approaches in the supervised setting can be
thought of as different ways to parameterize the reconstruc-
tion network fp. Specifically, A itself (or mappings related to
A such as adjoints or derivatives) can be embedding into the
architecture defining fy. For simplicity, below we will assume
A is a linear operator, denoted by A, though many of the
approaches we discuss extend naturally to nonlinear operators,
as well.

One simple method of incoroporating knowledge of A into
the reconstruction network is by applying an approximate
inverse of A, which we denote by AT (i.e., a matrix such
that A~'Ax ~ x for all images x of interest), to first map the
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deep CNN with skip connection

approximate
inverse

A—l

Fig. 7. When an approximate inverse A~1 of the forward model is known, a
common approach in the supervised setting is to train a deep CNN to remove
noise and artifacts from an initial reconstruction obtained by applying Al
to the measurements.

measurements back to image domain and then train a neu-
ral network to remove artifacts from the resulting images.
The specific choice of A1 will depend on the particular
inverse problem, but common choices include the adjoint A"
or psuedo-inverse A', though one is not limited to _these.
For example, in super-resolution a common choice of A~ is
upsampling by bicubic interpolation [18]; in CT reconstruc-
tion, a common choice of A~! s filtered back projection [98].
This approach can be viewed as learning a reconstruction
network whose first-layer weights are fixed and given by A~
In this case, it is often beneficial to use a residual (or “skip”)
connections in the reconstruction network, since the output
from the first layer is expected to be close to the output
of the network. More precisely, this approach structures the
reconstruction map fp as

fo0) = go(A71y) + A1y @)

where gy is a trainable neural network depending on parame-
ters 0; see Figure 7 for an illustration. In this case, the network
8o is interpreted as predicting the residual between the approx-
imate inverse and the reconstructed image. For example, in a
super-resolution context, the network gg is predicts the miss-
ing high frequency content from a low-pass-filtered image.
Networks with more complicated hierarchical skip connec-
tions are also commonly used, including the U-net [99] and
architectures inspired by wavelet decompositions [79].

Inspired by iterative optimization approaches, unrolled
methods go further and incorporate A into multiple layers of
the reconstruction network, as illustrated in Figure 8. To moti-
vate this approach, consider the MAP formulation (1) where
the regularizer r(-) (or, equivalently, the negative log-prior) is
convex. A commonly-used algorithm for optimizing (1) in this
case is proximal gradient descent [100], whose iterations have
the form:

x40 = p(x® — AT (ax® — ) 3)

where P(z):=arg minx{%Hx — z||> 4+ r(x)} denotes the proxi-
mal operator corresponding to the regularizer r(-), and 7 is a
step-size parameter. Suppose that we take as our reconstruc-
tion network the Kth iterate of proximal gradient descent x)
starting from the initialization ¥ = 0. Then we can turn
this into a trainable reconstruction network by replacing all
instances of the proximal operator P(-) with a trainable deep
CNN Py (-) mapping from images to images. In this approach
the reconstruction network can be interpreted as learning a

proximal operator. Any other free parameters, such as the
step-size parameter n can also be learned in training.

The unrolling approach presented above was pioneered
in [101] in a sparse coding context. Unrolled versions of
(proximal) gradient descent for inverse problems in imag-
ing are investigated in [80], [102]-[104]. Other optimization
algorithms that have been investigated in an unrolling con-
text include the alternating directions method of multipliers
(ADMM) [19], primal-dual methods [83], half-quadratic split-
ting [105], [106], block coordinate descent [107]-[109],
alternating minimization [82], and approximate message pass-
ing [88], [110]. Beyond unrolling of optimization algorithms,
recent work [84] considers an unrolling strategy based on
a Neumann series approximation to the solution map of
Equation (1).

2) Train From y’s Only (Measurements Only): If both the
forward model A and the noise statistics are known, then
the measurements themselves can be used as a proxy for the
ground truth. In this case, it is possible to train reconstruction
networks similar to those in Section IV-A1 from the measure-
ments alone, with an approporiate modification of the training
loss function. This is known as self-supervision, and has been
studied in [87], [111] to learn autoencoders for estimating
images x* from noisy measurements y. Below we highlight
a self-supervised approach based on Stein’s Unbiased Risk
Estimator (SURE).

a) GSURE: In classical statistics, SURE [112] is a tech-
nique to compute the mean square error of a mean estimator,
without access to the ground truth. In order to understand how
it can be used in deep learning for inverse problems, consider
the denoising problem, where y = x* + . Given a parametric
class of estimators {fp}pce parameterized by 6 € ®, SURE
estimates the mean square error of fp given y as

L, 2 1 2
Es[;}lx —fo | } = EE[;ny —fowll }
o By
+ 27divy (o ) — o™,
where o is the variance of & and divy(fp():=Y 1, Zi]‘g_y(ly)_
Notice that computing the right-hand side of this equation does
not require knowledge of x*.

If the estimators are differentiable with respect to 6, then
we can use gradient descent to learn a good estimator (i.e.,
0* are the parameters obtained by gradient descent, then the
estimate of x* is given by fy=(y)). This permits denoisers that
are learned using noisy measurements alone. SURE can be
generalized to other forward models A via GSURE [85], [113],
by minimizing the following functional with respect to 6:

1
AF SO
1 1
- Ee[— |Pax* | + = 1PAfy )2
n n
2 . 202
~ ;AT + %divy(fe@»],

where A is the pseudoinverse of A and P4 = A'A is projection
onto the row space of A.
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Fig. 8.

If the forward model A and its adjoint AT are known, then an iterative or unrolled network embeds A and AT in multiple layers of the network

using a recurrent block artitecture. Here this approach is illustrated with an unrolling of the proximal gradient descent algorithm, where the proximal map is

replaced with a deep CNN.

Notice that there is considerable freedom in choosing
the function fy. In particular, one can employ any of the
reconstruction networks described in the supervised setting
above. In [85], [86], [114], the authors apply SURE to train
the DnCNN [21] and Learned Denoising-Based Approximate
Message Passing (LDAMP) networks [88] for denoising and
compressive sensing tasks.

B. Forward Model Known Only at Test Time

We now consider the case where the forward model A is
known only at test time, and one has access to representative
samples of the ground truth during training. The algorithms
surveyed here have the property that after training a deep
model once, the same deep model can be used for any for-
ward model. This is advantageous in situations where ground
truth data is abundant, but training deep models for different
forward models is expensive.

1) Train From x’s Only (Ground Truth Only): When
presented with only ground truth data at train time, there are
two popular approaches in the literature. The first learns a
proximal operator, or denoiser, that can be used in an iterative
reconstruction algorithm, while the second utilizes the ground
truth training images to learn a generative prior.

a) Learning a proximal operator or denoiser from data:
The plug-and-play (PnP) [89] approach is a powerful method
for solving inverse problems using exising image denois-
ing algorithms. The high level idea behind these methods is
to use denoisers, such as BM3D [115], in place of prox-
imal operators in iterative optimization algorithms such as
ADMM [116], [117]. The denoiser acts as a regularizer for
the reconstruction, and ensures good reconstruction quality
at each iteration of the algorithm, such that the final recon-
struction matches the measurements and satisfies the prior
defined by the denoiser. A closely-related approach [90]
called Regularization by Denoising (RED), proposed a general
framework for PnP methods that can use deep neural networks
as denoisers, by changing the functional used for regulariza-
tion. Improved methods for training deep neural networks for
PnP can be found in [81], [106], [118].

Inspired by the success of Approximate Message
Passing algorithms (AMP) [119] for compressed sens-
ing, Learned Denoising-Based Approximate Messaging
Passing (LDAMP) [88] learns a denoiser which can be
used in a variant of AMP. Emprical results show that [88]
can achieve state of the art reconstructions with a 100-fold
speed improvement over other state of the art methods.
Additionally, LDAMP has a state evolution heuristic which

can predict the mean square error of the reconstruction at each
iteration.

A similar approach is considered in [22], where a denoiser
is learned from data via adversarial training. This denoiser
is used as a proximal operator in the Alternating Direction
Method of Multipliers (ADMM) algorithm [116] to esti-
mate x*.

Notice that all of these approaches are flexible and can
be used to solve general inverse problems, since training the
denoiser is independent of any fixed forward model.

b) Learning a generative prior from data: A comple-
mentary approach to learning a proximal operator is to learn
a model which is capable of generating new images based on
the training samples. Compressed Sensing using Generative
Models (CSGM) [25] demonstrated how deep generative mod-
els can be used for solving inverse problems. The first step of
CSGM [25] is to train a generative model G:RF - R" k <« n,
to capture the distribution of x, given training data. This
involves training a deep generative model, which can be
trained using a varity of methods, such as adversarial train-
ing for GANs [75] or variational inference for VAEs [74].
Once a deep generative model G is trained, the estimate of
a measured image x* is obtained by solving the following
optimization problem:

2= argmin[|AG(z) — ||, 4)
zeRk

and the reconstruction is given by G(Z). In words, we
search in the latent space of the generative model R¥ for a
generated image that best explains the measurements. The
optimization problem (4) is non-convex and actually NP-
hard [120]. CSGM [25] proposed solving this problem by
starting from a random initalization zy € R¥ and perform-
ing gradient descent (or ADAM [121]) to find the generated
image that best fits the measurements.

Similar ideas like projections on smooth manifolds
and additional structure beyond sparsity in inverse prob-
lems have been studied in earlier signal processing work,
e.g., [122]-[125]. Empirical results in [25] show that CSGM
can achieve similar reconstruction quality using 5 — 10
fold fewer measurements compared to sparsity-based LASSO
methods.

CSGM [25] also generalized the theoretical framework
of compressive sensing and restricted eigenvalue condi-
tions [126]-[129] for signals lying on the range of a deep gen-
erative model. For random subgaussian measurement matrices
A, a condition called the Set Restricted Eigenvalue condition
(SREC) [25], can be used to show the following two results:
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o if G is an L—Lipschitz function, m = O(klog %)
measurements suffice to guarantee that |G(Z) — x*|| <
6 ming; |z <, |G(z) — x*|| + 8.

« if G is a d—layered feedforward neural network
with piecewise linear activation functions, then m =
O(kdlogn) measurements suffice to guarantee that
1G@) —x*|| < 6min g [[Gz) — x*].

More recently, lower bounds [77], [130] established that these
numbers of measurements are order optimal. Further, [77]
demonstrated that deep generative models can produce all
k-sparse signals, hence modeling structure with DGMs is a
strict generalization of sparsity. The subgaussian assumptions
on A were relaxed in [131], which further proposed a new
algorithm which is robust to heavy tailed noise and arbitrary
outliers. Further, asymptotically optimal results can be found
in [132], [133].

These results guarantee that the optimium zZ of (4) will be
close to the best possible representation that the generative
model can achieve. Unfortunately, actually finding this opti-
mum is computationally hard [120] so it not known what can
be achieved provably in polynomial time, despite the excel-
lent empirical performance of gradient descent> Hand and
Voroninski [136] made important theoretical progress assum-
ing that the weights of the generative model G are random
and independent. For random weights, and further assuming
that each layer of the generative model grows by a logarith-
mic factor, [136] proved that the objective (4) has only two
local minima and can be optimized by gradient descent. An
analysis of projected gradient descent for this problem was
given by [137], while ADMM methods were proposed and
analyzed in [138]. Analyzing gradient descent inversion for
generative models that do not expand logarithmically per layer
(as postulated by [136]) remains as an open problem. The
least squares objective in (4) can be seen as a projection on
the range of a generator, and was also independently proposed
in [139]-[141].

The CSGM approach has been generalized to tackle differ-
ent inverse problems, algorithms for decoding, and to other
assumptions on the generative model. Examples of different
inverse problems include phase retrieval [133], [142], blind
deconvolution [93], geophysical seismic imaging [43], bilin-
ear estimation [143], and 1-bit compressed sensing [144].
[145], [146] propose improvements to the objective function
in (4). Alternate algorithms for decoding including ML-
VAMP [147], [148] and Surfing [149]. The results in [150]
provide uncertainty quantification for the reconstruction.

While trained generative models are a powerful tool for
solving inverse problems, training them can be challenging
since they require massive datasets and a long training time.
Surprising results show that untrained generative networks
can solve this difficulty, and we review this line of work
in Section VIIL

2) Train From y’s Only (Measurements Only): Having y’s
among the training data suggests that there is a fixed A

2Empirically, gradient descent inversion works well for medium-sized gen-
erative models like DCGAN but has not been very effective in inverting bigger
generators like BigGAN [134], see [135] for a discussion.

generating training samples. While work in this setting should
provide few technical challenges, we are unaware of applica-
tion domains in which this paired data would be available yet
A would be wholly unknown except at test time.

C. Forward Model Partially Known

We now consider inverse problems where the forward oper-
ator is partially known. This can occur, for example, when
the forward model is parametric and we know either the
distribution of or sufficient statistics about the parameters.

1) Train From (x,y) Pairs (Paired Ground Truth and
Measurements): In general, knowledge of A arises from a
mathematical model of an imaging system or careful calibra-
tion procedures. In either case, we typically only know an
approximation of A. In general, these inaccuracies can compli-
cate the reconstruction process, but when we have real-world
training observations of the form (x,y), then we can expect
those samples to reflect the true A. As a result, training a deep
neural network to perform reconstruction can leverage the par-
tial knowledge of A to perform some approximate inversion
of the measurement process while using the training data to
learn to remove “artifacts” and compensate for inaccuracies in
the model. See the illustration in Figure 7.

2) Train From Unpaired x’s and y’s (Unpaired Ground
Truth and Measurements): In certain cases, one has access
to unpaired samples of the ground truth and measurements.
That is, if x},y; denote the i training sample of the ground
truth and measurement, then x7,y; follow the marginal dis-
tributions of x*,y, without following the joint distribution of
(x*,y). This can occur for example, if one has clean MRI
scans as ground truth, and MRI scans with motion blur as
measurements, without any pairing between the clean and
blurry scans.

Models like CycleGAN [151] are well-suited for this sit-
uation, as they can learn forward and backward mappings
between the image and measurement domain, given unpaired
samples of images and measurements. This idea has been
explored in [152], for removing motion blur from MRI scans,
as well converting PET scans to CT scans. A similar idea was
explored for MRI by [153], although in this case the forward
operator is assumed to be a subsampled Fourier transform.

We briefly describe the original CycleGAN algorithm, as
its extension to inverse problems can be derived with domain
specific modifications. Let py, py, denote the distributions
over x,y. CycleGAN aims to learn two generative models
F:X - Y,G:Y — X, where X,) are respectively
the image and measurement domain. Since G, F, need to be
trained with unpaired x’s and y’s, one way to create a joint
distribution between x, y is to make G, F' approximate inverses
of each other. That is, for all y € ), F(G(y)) =y, and for all
x € X, G(F(x)) = x. In [151], this requirement is satisfied by
introducing the cycle consistency loss, defined as

Leye(G, F) = Ep,[lIx = GFE@) 1]+ Ep, [lly = F(GO)II1].

By adding this cycle loss to individual adversarial losses for
G and F, they can be simultaneously trained. Once they are
trained, F, G can be used to map from the image domain to
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the measurement domain, and vice versa. For example, if y is
an MRI scan with motion blur, then G(y) will remove the blur
present in y.

3) Train From x’s Only (Ground Truth Only): Generative
priors [74], [75] have been successfully applied in many
inverse problems [25], and are a good option when one has
access to samples of x. These priors have also found success in
problems like blind deconvolution [93], where A(x) = x ® A,
and the distribution of A is known, but we do not know the
exact blurring kernel that produced the measurements. In [93],
it is assumed that there exists two generative models given by
G4, Gy: the output distribution of G4 captures the distribution
of A, whereas Gy captures the distribution of x.

Given Gy, Gy, and measurements y = x* ® A* + &, one
can recover the ground truth x* and the blurring kernel A* by
solving the following optimization problem:

(&)

A A . 2
Zx, 24 = argmin ||y — Gx(zx) ® Gaza)ll”
zx Rk 74 €RK

Once this is solved, the estimates for x*, A*, are given by
Gx(ﬁx)a GA(£A)~

This approach was generalized to blind demodulation
by [154]. Reference [154] also provide theoretical guarantees
on the loss landscape of the above objective, and show that it
can be minimized by gradient descent.

Another approach is DeblurGAN [92], in which a GAN
is trained end-to-end using blurry images as input. During
training, clean images are synthetically blurred, and the GAN
must learn to generate crisp images given blurry images. This
produces cripser images, but it can be expensive, since a
minor change in the distribution of A would require retraining
the GAN.

4) Train From y’s Only (Measurements Only): Learning
from measurements alone is a hard task, which is further com-
pounded by the difficulty of only having partial knowledge of
the forward model. In order to tackle this problem, it is com-
monly assumed that the forward operator has an underlying
distribution, and we have knowledge of its statistics. There are
two popular ways of solving this problem: one is a “super-
vised” approach, and another is via adversarial training. We
first explore the supervised approach.

a) Noise2Noise: Noise2Noise [95] learns a neural
network fy : R™ — R”" that accepts noisy measurements as
input and produces clean samples as output. The training of
f is reminiscent of supervised training, except it does not
actually need ground truth. In order to train f, [95] assume
that

o The training data consists of (X,y) pairs, where X is a

noisy version of x*, and y = A(x*) + &.

o The samples ¥ satsify E[x|y] = x*.

Given this dataset, the learned neural network is fp=, where
0* = argming E[||fy(y) — %||?]. The theoretical argument for
Noise2Noise is based on the assumption E[x|y] = x*. This
allows f to be trained from contaminated samples X, without
access to the clean ground truth. In theory this should require
multiple x¥ for each x*, but [95] observe that one sample suf-
fices. An important benefit of this approach is that it does not
need explicit knowledge of the parameters or distribution of

A. While Noise2Noise does not need the ground truth, it still
requires X, which is a noisy proxy of x*. We now explore an
alternative approach which weakens this assumption.

b) Adversarial training:  Adversarial training has
emerged as a powerful technique for learning high dimen-
sional distributions that are hard to describe. When A follows
a parametric distribution, AmbientGAN [76] demonstrates
how adversarial training can learn from measurements alone.
With a slight abuse of notation, let y,x*, A, respectively
denote random variables associated with the measurements,
ground truth, and forward model. Similarly, let Py, Py+, P4
denote their probability distributions. Given samples from
Py, and assuming that it is easy to sample parameters of the
forward model, AmbientGAN learns the distribution P, by
optimizing the following objective:

mGin max Ey[log(Dy))] — E a[log(l — D(A(G))))].

where G : R¥K - R* D : R" — [0, 1] with k¥ « n, and
z € RF is a random latent variable which can be easily
sampled, for example i.i.d. Gaussian or i.i.d. uniform. The
intuition for this approach is similar to that of traditional
GANSs [75]. In traditional GANSs, the discriminator D must
learn to distinguish between the distribution Py and Pg),
whereas in AmbientGAN, the discriminator must learn to
distinguish between P, and P 4¢). Under certain regularity
conditions on the distributions P 4, Px+, [76] show that the
distribution P+ can be exactly recovered.

Once the AmbientGAN is trained, it can be used for infer-
ence: for a new A,y, the reconstruction X = G(Z) can be
obtained by solving the constrained least squares problem (4).
Note that if the ground truth distribution has been exactly
learned by AmbientGAN, A need not follow any distributional
assumptions in the inference phase.

While AmbientGAN has nice theoretical properties, it can
be computationally expensive, since it requires running an
optimization procedure at test time. A more direct solution
is to train a network G which accepts the measurements as
input and outputs a possible reconstruction. Reference [96] is
one such approach, where the reconstruction G(y) is ideally
the MAP estimate of x*. Similar ideas have been explored
in [155], although in [155] there is no stochasticity in .A.

D. Unknown Forward Model

In some cases the forward model may be entirely unknown,
misspecified, or computationally intractible to use in training
and testing. If this is the case, then one is essentially limited
to the supervised setting, i.e., learning must take place with
matched image and measurement pairs.

1) Train From (x,y) Pairs (Paired Ground Truth and
Measurements): Assuming that one only has access to image
and measurement pairs (x,y) without knowledge of the for-
ward model the simplest approch is to treat reconstruction map
y — x as a “black box” that can be well-approximated by
conventional neural network architectures with the appropri-
ate input and output dimensions, as illustrated in Figure 9. This
is the approach taken in [97], which proposed the automated
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Fig. 9. When the forward model A is unknown but sufficiently many training
samples are available, learning a reconstruction map is still possible using deep
neural networks, as proposed in the AUTOMAP framework [97].

transform by manifold approximation (AUTOMAP) frame-
work. In this framework, the reconstruction network fy is
modelled as a map between a low-dimensional “measurement
manifold” ) and an “image manifold” X embedded in high-
dimensional Euclidean space: fy = ¢ 0 g o ¢y 1 where ¢y 1
maps Euclidean space to intrinsic coordinates in )/, g is a dif-
feomorphism between ) and &', and ¢, maps from instrinic
coordinates in X to Euclidean space. To approximate this ide-
alized mapping, ¢, ! is then parameterized as a sequence of
fully connected neural network layers, while g and ¢, are
parameterized as a sequence of CNN layers. Note that while
the experiments in [97] used knowledge of the forward model
A to generate training data from fully sampled images, in
principle the approach should succeed without access to A.

2) Unsupervised Approaches: If A is entirely unknown,
then there are limited options without paired (x,y) training
samples, as these pairs are our only mechanism for under-
standing anything about A. In order to make this problem
identifiable, it is necessary to have some additional information
about A.

V. KEY TRADEOFFS
A. Sample Complexity vs. Generality

In many of the unsupervised learning approaches we
discussed above, training takes place independently of the
forward model A. This includes compressed sensing with gen-
erative models and iterative plug-and-play reconstruction with
a denoising autoencoder. In these cases, one learns a genera-
tive model or denoising autoencoder using only a collection
of training images, which does not require knowledge of A.
The advantage of this approach is that once training has taken
place, the learned generative model or denoising autoencoder
can be used for any forward model, so we do not need to re-
train a system for each new inverse problem. In other words,
the learning is decoupled from solving the inverse problem,
resulting in high generality.

However, the generality of the decoupled approach comes
with a high price in terms of sample complexity. To see
why, note that learning a generative model or a denois-
ing autoencoder fundamentally amounts to estimating a full
prior distribution over the space of images; let us denote this
distribution as p(x).

Thoroughly understanding the space of images of interest
is important if our learned regularizer is to be used for linear
inverse problems of which we are unaware during training.

(a) (b)

Fig. 10. Sample complexity in learning to solve inverse problems. (a) An
example of an inpainting problem in which the goal is to estimate the missing
(black) pixels in the center of the image. If we do not know ahead of time
which pixels may be missing, then we must learn (perhaps implicitly) the
distribution over all possible images, p(x). (b) If we know at training time
which pixels are going to be missing, this information can be used to reduce
sample complexity. For instance, if we know the missing pixels will be located
as they are in (a), then the red highlighted pixels in (b) are irrelevant to the
inpainting task and we do not need to learn the distribution of pixels values in
those regions. Rather, we must only learn the conditional distirbution p(x|y),
which can require significantly fewer training samples.

However, when we know at training time what A is, then we
only need to learn the conditional distribution p(x|y) where
y = Ax + €. For example, consider an inpainting scenario
in which we only observe a subset of pixels in the image x.
Rather than learn the distribution over the space of all possible
images, we only need to learn the distribution over the space
of missing pixels conditioned on the observed pixels, as in
Figure 10. Of course, if we know the forward model A and
the statistics of the noise €, then p(x|y) can be calculated from
p(x) and A using Bayes’ law. However, such an approach is
not always the most sample-efficient.

For instance, imagine our images have d pixels and the
distribution p(x) lies in a Besov space with a smoothness
parameter o, where larger o implies smoother functions that
are easier to estimate [156]. Then the L? density estimation
error scales like NVJXW, where N is the number of training
samples [157]-[159]. In contrast, conditional density estima-

tion errors scale like N 720;’!7%1’, where o’ is the smoothness of
the conditional density and d’ is the number of pixels on which
the conditional density depends [160], [161] (i.e., the number
of pixels not covered by the red overlay in Figure 10) . In
many scenarios @’ > a and d’ < d, meaning that conditional
density estimation can achieve much smaller errors with many
fewer training samples than strategy of first estimating the full
density and then calculating the conditional density based on
this higher-error estimate.

The key point is that decoupled approaches (implicitly)
require learning a full prior p(x) whereas a method that
incorporates A into the learning process has the potential to
simply learn the conditional density p(x|y), which often can
be performed accurately with relatively less training data.

B. Reconstruction Speed vs. Accuracy

In many inverse problems in imaging, the computational
bottleneck in traditional reconstruction algortihms comes from
applying the forward model A (or its adjoint AT). This is
a perpetual challenge in applications such as medical image
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Robustness to forward model perturbations. (a) Reconstructions produced by Neumann networks [84], unrolled optimization [80], and a residual

autoencoder [164]. The first row shows reconstructions when the true forward model is used during training and the same forward model is true and used
during testing. The second row shows reconstructions when the true forward model is used during training and is also used at test time even though a different
forward model generated the test data. (b) Same as (a), but zoomed into a smaller region to help show details. This example illustrates the shortcomings of
learning to reconstruct for a specific forward model A and also how different learning frameworks can be more or less sensitive to perturbations of A. The
tradeoffs between network architecture and robustness are not well understood and an active area of research.

reconstruction. As a result, approaches based on iterative
optimization with a large number of step sizes can be quite
time-consuming [11], [57], [89], [90] even though the resulting
reconstruction may be highly accurate. Deep learning pro-
vides an opportunity to reduce the computational burden of
model-based iterative reconstruction methods.

For instance, consider iterative reconstruction methods.
Each iteration typically requires at least one application of the
forward model operator A and its adjoint, and these calcula-
tions can be the primary computational burden of the method.
Reducing the number of iterations can therefore dramatically
reduce reconstrution time. In classical methods, like iterative
total-variation regularized reconstruction, we have few mech-
anisms for controlling the number of iterations since the
methods need to run to convergence to yield accurate results.
However, empirical results have shown that deep-learned based
approaches can achieve comparable accuracies with far less
computation. For instance, consider the unrolled optimization
methods described above; there the number of blocks is akin
to the number of iterations, and by fixing the number of blocks
and then learning a regularizer within this framework, we
essentially learn a reconstruction method that is adapted to a
small number of iterations. Specialized unrolling approaches
incorporating preconditioners can reduce the number of blocks
and further increase the speed.

VI. CAVEATS/BEWARE/FAILURE MODES

So far we have reviewed some of the exciting breakthroughs
that have been made possible through deep learning. In this
section we view these algorithms through a more critical lens,
in order to understand their current limitations and failures.
This raises important research questions that we must address
before we can hope to apply deep learning in real world
applications of inverse problems.

1) Robustness to Different Forward Model at Test Time
than at Train: In some settings, the forward model used

during training is different from the forward model used dur-
ing testing. For example, imagine learning to reconstruct MRI
images for a scanner at one clinic and then attempting to
use that learned algorithm to reconstruct MRI images for a
(subtly different) scanner at another clinic. The different meth-
ods described in Section IV will have different degrees of
robustness to perturbations in the forward models between
training and testing. This is illustrated in Figure 11 for a few
representative methods.

A related model mismatch issue arises in the discretization
of forward models and learned reconstruction algorithms. For
example, in order to generate training data many supervised
learning methods commit the “inverse crime” [162] by assum-
ing the forward model and ground truth images are discrete,
when in fact they are defined in a continuous domain. This
can lead to undesirable artifacts at test time, such as Gibb’s
ringing artifacts in MRI [163]. Learning-based approaches by
themselves cannot resolve this issue, and need to be properly
modified in order to recover artifact-free images at test time
by, e.g., incorporating post-processing steps.

2) Recovering Features Not Represented by Training Data:
The central assumption underlying all machine learning based
image reconstruction methods is that the training data is
representative of what we might see at test time. In some
applications, such as medical imaging, it is unclear to what
extent that assumption holds. One might imagine patients
with unusual geometries in their anatomy or tumors that are
not reflected by the training set [165], [166]. The ability of
learned reconstruction methods to faithfully reconstruct such
features remains poorly understood and can vary from method
to method, as illustrated in Figure 12.

3) Difficult to Interpret: A side effect of the flexibility and
power offered by deep learning models is that they are diffi-
cult to analyze and interpret. Hence we currently have a very
poor understanding of some methods that provide state of the
art results. For example, deep image prior [167] and related
methods [168], [169] provide very surprising results — they do
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Robustness to image features not represented in training set. Three different reconstruction methods — Neumann networks [84], unrolled

optimization [80], and a residual autoencoder [164] — were trained on an MRI training set from [82]. They are then applied to a test image that corre-
sponds to an MRI image with a small square inserted near the center, as shown in the far left column. This type of square feature was not present in the
training set. The three methods do recover the feature, but also produce non-trivial artifacts to its left and right. Both original (top) and zoomed (bottom)

images are shown.

not require any training data, but are competitive with meth-
ods that leverage knowledge from large datasets. The current
hypothesis for their success is that convolutional models are
biased towards smooth signals, and [170] provide preliminary
theoretical arguments for this hypothesis. However, a solid the-
oretical framework for analyzing these models remains open.
A similar argument can be made against supervised models,
wherein we do not understand the training phase well enough
to analyze the predictions made at inference time.

4) Creation of Artifacts: There has been significant progress
in generative modeling over the last few years, and the percep-
tual quality of generated images is almost lifelike [134]. Early
GANS struggled with images containing complicated semantic
structure, but modern GANs have been able to overcome this
issue. Despite the recent progress in developing better gener-
ative models, the generated images contain many artifacts and
distortions. Deep learning models for medical imaging that
directly map from measurements to images are also some-
what contentious. Deep learning has an incredible ability to
generate realistic looking images, even when the features in
the image are not actually present [166]. These artifacts can
be problematic if the reconstructions are used for downstream
tasks such as classification of tumors.

5) Failure Modes May be Hard to Recognize: As an illustra-
tive example, consider the case of compressed sensing using
generative models [25]. The decoding algorithm always returns
an image within the range of the generative model, which by
design will have high perceptual quality. This is a positive
when the data is well behaved and does not have outliers. Now
consider a case where the forward operator is heavily underde-
termined or data has outliers. In this case, the algorithm in [25]
will return a high quality image even if it has failed [131]. In
contrast, handcrafted algorithms Lasso would simply return
a non-sparse signal. This failure mode is easy to recognize
for Lasso, but if we are using a generative model, we may
completely miss the failure. This prompts the need for algo-
rithms that are either robust to outliers [131], or algorithms that
can provide uncertainty quantification for their reconstructions
such as in [150].

VII. OPEN PROBLEMS AND FUTURE DIRECTIONS

1) Control Over Forward Model Design: In many applica-
tions one has some degree over the measurement process. For
instance, one can select which locations in k-space are sampled
in an MRI scan or which DMD patterns are applied in a single-
pixel-camera. While this problem has long been tackled using
heuristics like variable density sampling [171], deep learning
provides a mechanism to optimize the sampling pattern in a
more principled way. One need only make the measurement
model a trainable parameter that can be optimized with train-
ing data [23]. This idea can been used to do things like design
illumination patterns for microscopes [38]-[40], [172].

Taking this idea one step further, deep learning can even be
used to design physical systems. A series of recent works have
modeled cameras as differentiable optical systems and then
used back-propagation to design specialized optical filters and
diffractive optical elements for improved demosaicing [173],
color imaging and demosaicing [173], super-resolution and
extended depth-of-field imaging [174], monocular depth esti-
mation [175], [176], high dynamic range imaging [177], and
single-lens wide-field-of-view imaging [178].

2) Extensions to Other Application Domains: This tutorial
has focused on inverse problems in imaging, but inverse prob-
lems abound in many different settings, including estimating
boundary conditions for partial differential equations, esti-
mating molecular structure from multi-modal measurements,
radar, geophysics, and more. Many of the central themes of
this tutorial, including understanding what must be known
about the forward operator or the nature of the training data
needed for various algorithms to be viable translate to these
other settings, while the specifics of how to choose the neural
network architecture or tradeoffs among different algorithms
remain open questions. Furthermore, the discussion in this
paper focuses on settings in which everything that is known
about the physical setting of the inverse problem may be
encapsulated in the forward model .A; in more general settings,
in which we may have access to additional physical con-
traints or side information, there is an opportunity to develop
frameworks for incorporating this knowledge.

Authorized licensed use limited to: Stanford University. Downloaded on February 02,2022 at 01:18:34 UTC from IEEE Xplore. Restrictions apply.



52 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

3) Unlearned Methods: Deep Image Prior (DIP) [167] is an
algorithm which uses untrained generative models for image
reconstruction. Given measurements y and the forward opera-
tor A, DIP initializes a generative network Gy : R¥ — R” with
a fixed random input vector z € R¥, and optimizes over the
network weights 6. The reconstruction X is given by Gy=(z),
where

0* = arggminllA(Ge @) —ylI*. (6)

Experimental results in [167] show that DIP is competitive
with state of the art algorithms. This result is surprising, since
DIP requires no training data, and only requires measurements
from a single sample. Additionally, the number of weights in
the generative network often exceeds the number of pixels in
the image. This implies that DIP should be able to find a set
of weights that can fit any image, including Gaussian noise,
and this is observed empirically in [167]. In order to avoid
this, [167] uses early stopping as a regularizer. For example,
if gradient descent is used to solve eq. (6), then early stop-
ping means that gradient descent must be stopped before it
converges. An intuitive explanation for the success of DIP is
that convolutional neural networks are biased towards smooth,
“natural” images, and hence smooth components of an image
will be reconstructed before the noisier components in the
measurements. Results in [169], [179], [180] generalize the
results in [167].

Deep Decoder [168] is a related algorithm which fixes issues
encountered in DIP. The Deep Decoder is an underparame-
terized network which is competitive with DIP and does not
require early stopping. A preliminary result in [168] shows
that a single layer Deep Decoder will not fit Gaussian noise,
and further analysis can be found in [170]. Beyond these pre-
liminary insights, untrained generative models remain poorly
understood and theoretically surprising. A proper theoretical
framework for understanding when they work, how to properly
regularize them and how to measure their complexity remain
significant open problems.

4) Transfer Learning: In many settings, such as medical
imaging, we may have only limited quantities of training data;
in other settings, such as astronomy, we may not have access
to any “real” training images but can generate simulated train-
ing data. In these settings, we face the challenge of leveraging
data from a different application domain or from simulations
to improve inverse problem solvers in our target domain. This
challenge is generally referred to as “transfer learning” or
“domain adaptation” [181], [182]. The limited emprical work
today in transfer learning for inverse problems in imaging is
promising and suggests the need for additional study.

5) Nonlinear Inverse Problems: Nearly all the examples
presented in this tutorial had linear operators for the forward
model. However, in many applications the true forward model
is nonlinear. A number of works have investigated the phase
retrieval problem [45], [46], [142], [180], [183]-[185], often
with great empirical success. However, little is known about
how we should solve nonlinear inverse problems generally,
or the inherent tradeoffs associated with nonlinear forward
models.

6) Uncertainty Quantification: Characterizing uncertainty
in solutions to an inverse problem is essential for many
imaging tasks, including medical diagnosis from CT or MR
images. However, most learning approaches investigated in
this work do not provide uncertainty estimates. Taking a
Bayesian perspective, recent work [186], [187] addresses
this shortcoming by estimating a full posterior distribution
of images fitting a given set of measurements (or esti-
mate statistics derived from the posterior) using an gener-
ative adversarial training framework. This is used in [186]
to give pixel-wise variance estimates and perform hypoth-
esis testing in a CT reconstruction setting. Incorporating
similar uncertainty quantification into other learning-based
approaches, especially in cases where less is known about
the distribution of ground truth images, is an interesting open
problem.
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