
EE 378A Statistical Signal Processing Professor Andrea Montanari

Homework 1
Due on: 04/18/2022

Problem 1

Equivalence between different types of estimators
Adapted from Exercise 1.11 from A. Tsybakov, Introduction to Nonparametric Estimation
Consider the regression model under the following assumptions:

(i) We consider the nonparametric regression model

Yl = f(tl) + σzl, l ∈ {0, . . . , n− 1},

where f is a function from [0, 1] to C. The random variables zl are i.i.d. complex Gaussian with
zl ∼ NC(0, 1) and tl = l/n for l ∈ {0, . . . , n− 1}.

(ii) (φq(t))q∈Z is the trigonometric basis:

φq(t) = ei2πqt

(iii) The Fourier coefficients bq =
∫ 1

0
f(t)φq(t)dt of f satisfy∑

q∈Z
|bq| <∞

The smoothing spline estimator f spn (t) is defined as a solution of the following minimization problem:

f spn = argmin
f∈W

[
1

n

n−1∑
l=0

|Yl − f(tl)|2 + κ

∫ 1

0

|f ′′(t)|2 dt

]
, (1)

where κ > 0 is a smoothing parameter and W is one of the sets of functions defined below.

(a) First suppose that W is the set of all the functions f : [0, 1]→ C such that f ′ is absolutely continuous.
Prove that the estimator f spn reproduces polynomials of degree ≤ 1 if n ≥ 2 (i.e. if f(t) = αt + β for
some α, β ∈ C and σ = 0 then f spn (t) = f(t)).

Solution
If f(t) = αt+ β and σ = 0 then Yl = αtl + β. Consider the objective in (1) for some g ∈W :

L(g) =
1

n

n−1∑
l=0

|Yl − g(tl)|2 + κ

∫ 1

0

|g′′(t)|2 dt

Note that L(f) = 0 and L(g) ≥ ‖g′′‖2L2([0,T ]) ≥ 0, thus if g′′(t) 6= 0 then L(g) > 0. The smoothing spline

estimator is therefore linear: f spn (t) = argmin
f∈W

L(f) = α′t+ β′ and since L(f) = 0 and L(α′t+ β′) > 0

iff α 6= α′ or β 6= β′, the smoothing spline estimator recovers f, i.e. α′ = α and β′ = β.

(b) Suppose next that W is the set of all the functions f : [0, 1]→ C such that

(i) f ′ is absolutely continuous and
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(ii) the periodicity condition is satisfied: f(0) = f(1), f ′(0) = f ′(1).

Prove that the minimization problem (1) is equivalent to:

min
{bq}q∈Z

∑
q∈Z

(
−2Re

(
θ̂qb
∗
q

)
+ |bq|2

(
κ|aq|2 + 1

) [
1 +O(n−1)

])
, (2)

where bq are the Fourier coefficients of f, θ̂q = 1
n

∑n−1
l=0 Ylφ

∗
q(tl), and aq is defined as aq = −(2πq)2.

Bonus: prove that the term O(n−1) is uniform in {bq}q∈Z, namely that there exists a constant C > 0
that does not depend on {bq}q∈Z and the modulus of the term is bounded by C/n.
Solution
Since {bq}q∈Z is the Fourier series of f :

f(t) =
∑
q∈Z

bqφq(t)⇒ f(tl) = f(l/n) =
∑
q∈Z

bqφq(l/n)

The Fourier series of f ′′ is then

f ′′(t) =
∑
q∈Z

bqφq(t) =
∑
q∈Z
−(2πq)2bqφq(t) =

∑
q∈Z

aqbqφq(t)

By Parseval’s identity: ∫ 1

0

|f ′′(t)|2dt =
∑
q∈Z
|aq|2|bq|2

Plugging this into the objective (1) gives

L(f) =
1

n

n−1∑
l=0

|Yl −
∑
q∈Z

bqφq(tl)|2 + κ
∑
q∈Z
|aq|2|bq|2 (3)

Rewrite the first summand in (3) and plug in θ̂q :

1

n

n−1∑
l=0

|Yl −
∑
q∈Z

bqφq(tl)|2 =
1

n

n−1∑
l=0

|Yl|2 − 2
∑
q∈Z

Re

(
b∗q

1

n

n−1∑
l=0

Ylφ
∗
q(tl)

)

+
∑

q1,q2∈Z
bq1b

∗
q2

(
1

n

n−1∑
l=0

φq1(tl)φ
∗
q2(tl)

)

=
1

n

n−1∑
l=0

|Yl|2 − 2Re

∑
q∈Z

θ̂qb
∗
q

+
∑

q1,q2∈Z
bq1b

∗
q21n|(q1−q2), (4)

where for a condition A : 1A =

{
1 if A holds

0 otherwise
, n|m denotes that n divides m, i.e. m = nk for

some k ∈ Z and we used the following property of φq(tl) (that was also derived in the lecture):

1

n

n−1∑
l=0

φq1(tl)φ
∗
q2(tl) =

1

n

n−1∑
l=0

ei2π(q1−q2)l/n

=

{
1, if q1 − q2 = kn for some k ∈ Z
1−ei2π(q1−q2)

1−ei2π(q1−q2)/n , otherwise

= 1n|(q1−q2).
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Continuing from (4) and rearranging the summation indices leads to

L(f)− 1

n

n−1∑
l=0

|Yl|2 + 2Re

∑
q∈Z

θ̂qb
∗
q

 − κ
∑
q∈Z
|aq|2|bq|2 (5)

=
∑

q1,q2∈Z
bq1b

∗
q21n|(q1−q2)

=
∑
q∈Z
|bq|2 +

∑
q1∈Z

∑
k∈Z\{0}

bq1b
∗
q1+kn

=
∑
q∈Z
|bq|2 +

∑
q∈Z:
|q|>n/2

∑
k∈Z\{0}

bqb
∗
q+kn +

∑
q∈Z:
|q|≤n/2

∑
k∈Z\{0}

bqb
∗
q+kn

≤
∑
q∈Z
|bq|2 +

∑
q∈Z:
|q|>n/2

∑
q′∈Z
|bq||bq′ |+

∑
q∈Z:
|q|≤n/2

∑
q′∈Z
|q′|≥n/2

|bq||bq′ |

≤
∑
q∈Z
|bq|2 + 2

 ∑
q∈Z:
|q|≥n/2

|bq|


∑
q∈Z
|bq|

 (6)

Consider the terms that form the second summand:∑
q∈Z
|bq| = |b0|+

∑
q∈Z\{0}

(|bq||aq|)
1

|aq|

≤ |b0|+
√∑
q∈Z
|bq|2|aq|2

√√√√ ∑
q∈Z\{0}

1

(2πq)4

∑
q∈Z:
|q|≥n/2

|bq| =
∑
q∈Z:
|q|≥n/2

(|bq||aq|)
1

|aq|

≤
√√√√√∑

q∈Z
|bq|2|aq|2

∑
q∈Z:
|q|≥n/2

1

(2πq)4

≤ 1

n/2

√∑
q∈Z
|bq|2|aq|2

√√√√ ∑
q∈Z\{0}

1

(2πq)4
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Taking the product of the above and letting C2 =
∑
q∈Z\{0}

1
(2πq)4 = 1

720 gives ∑
q∈Z:
|q|≥n/2

|bq|


∑
q∈Z
|bq|

 =
1

n/2
|b0|
√∑
q∈Z
|bq|2|aq|2C +

1

n/2

∑
q∈Z
|bq|2|aq|2C2

≤ 4

n

|b0|2 + C2
∑
q∈Z
|bq|2|aq|2

+
2C2

n

∑
q∈Z
|bq|2|aq|2

=
2

n

∑
q∈Z
|bq|2(1 + 6C2|aq|2)

≤ max{2, 12C2/κ}/n
∑
q∈Z
|bq|2(1 + κ|aq|2)

Plugging this result into (6) gives that

L(f) =
1

n

n−1∑
l=0

|Yl|2 − 2Re

∑
q∈Z

θ̂qb
∗
q

+
∑
q∈Z
|bq|2(1 + κ|aq|2)

(
1 +

max{4, 24C2/κ}
n

)
(7)

Note that since 1
n

∑n−1
l=0 |Yl|2 does not depend on bq, minimizing L(f) is equivalent to minimizing

L(f)− 1
n

∑n−1
l=0 |Yl|2. Finally noting that max{4,24C2/κ}

n = O(1/n) gives the desired result.
Bonus:

Note that we O(1/n) term is max{4,24C2/κ}
n = C ′/n for some constant C ′, so the O(1/n) term is uniform

in {bq}q∈Z.

(c) Assume now that the term O(n−1) in (2) is negligible. Formally replacing it by 0, find the solution
of (2) and conclude that the periodic spline estimator is approximately equal to a weighted projection
estimator:

f spn (x) ≈
∑
q∈Z

λq θ̂qφq(t)

with weights λq written explicitly.
Solution:
If the O(1/n) term is negligible, the problem (2) decomposes over bq ∈ C and the optimal Fourier
coefficients coefficients in (2) are:

boptq = argmin
bq∈Z

(
−2Re

(
θ̂qb
∗
q

)
+ |bq|2

(
κ|aq|2 + 1

))
=

θ̂q
1 + κ|aq|2

The optimal spline estimator is then

f spn (t) ≈
∑
q∈Z

boptq φq(t) =
∑
q∈Z

1

1 + κ|aq|2
θ̂qφq(t)

(The ≈ comes from the fact that we neglected the O(1/n) term) λq = 1
1+κ|aq|2

(d) Use (c) to show that for sufficiently small κ the spline estimator f spn is approximated by the kernel
estimator:

fn(t) =
1

nh

n−1∑
l=0

YlK

(
tl − t
h

)
,
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where h = κ1/4 and K is the Silverman kernel:

K(u) =

∫ ∞
−∞

cos(2πtu)

1 + (2πt)4
dt.

Solution
If h is small enough to justify the approximation

K (u) ≈
∑
q∈Z

cos(2πqhu)

1 + (2πqh)4
h

then one can rewrite the kernel estimator as

fn(t) ≈ 1

n

n−1∑
l=0

YlK

(
tl − t
h

)

=
1

n

n−1∑
l=0

Yl
∑
q∈Z

cos
(
2πqh tl−th

)
1 + (2πqh)4

=
1

n

n−1∑
l=0

Yl
∑
q∈Z

cos(2πq(tl − t))
1 + κ|aq|2

=
1

n

n−1∑
l=0

Yl
∑
q∈Z

e2πq(t−tl) + e−2πq(t−tl)

2(1 + κ|aq|2)

=
1

n

n−1∑
l=0

Yl
∑
q∈Z

e2πq(t−tl)

1 + κ|aq|2

=
1

n

n−1∑
l=0

Yl
∑
q∈Z

φq(t)φ
∗
q(tl)

1 + κ|aq|2

=
∑
q∈Z

1

1 + κ|aq|2

(
1

n

n−1∑
l=0

Ylφ
∗
q(tl)

)
φq(t)

=
∑
q∈Z

1

1 + κ|aq|2
θ̂qφq(t) ≈ f spn (t)
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