
EE378B Inference, Estimation, and Information Processing

Practice Final: Group estimation
Andrea Montanari

This final will be assigned Friday, March 19 at 12:00 pm PST and be due on Saturday, March 20 at
12:00 PM PST. Solutions should be submitted by e-mail to Andrea (montanari@stanford.edu) and Qijia
(qjiang2@stanford.edu).

You are allowed to use books, notes and papers, but you should provide arguments for anything that was
not proved in class. You can also contact Andrea and Kabir for reasonable questions about the text. You
are not allowed to consult/collaborate with your colleagues or anybody else.

We want to determine n unknown matrices θ1, . . . ,θn ∈ SO(3) (the group of 3 × 3 orthogonal matrices
with determinant equal to 1), which are independent and uniformly distributed in SO(3). We are given noisy
observations of the relative group element between any pair θi, θj . Namely, for each i 6= j, i, j ≤ n, we
observe a matrix Y ij ∈ R3×3 given by

Y ij = θTi θj + σnZij , (1)

where (Zij)i 6=j,i,j≤n are independent 3 × 3 matrices, with independent entries (Zij)a,b≤3 ∼ N(0, 1). We

are interested in estimators θ̂ : Y 7→ θ̂(Y ) that take as input Y = (Y )i<j≤n and return n matrices

θ̂(Y ) = (θ̂1(Y ), . . . , θ̂n(Y )), θ̂i(Y ) ∈ R3×3. Throughout, we will require θ̂i(Y ) to be an orthogonal matrix

(i.e. θ̂i(Y )Tθ̂i(Y ) = I3).

(1) We want to define a good metric for estimation in this problem. Consider the, for instance, the following
options (despite the notation, these are not real distances):

dist0(θ̂,θ) =
1

6n

n∑
i=1

‖θi − θ̂i‖2F , (2)

dist(θ̂,θ) =
1

6n
min

R: RTR=I

n∑
i=1

‖Rθi − θ̂i‖2F . (3)

Why is dist more appropriate than dist0? Prove the following properties: (i) dist admits the represen-
tation (here ‖ · ‖∗ denotes the nuclear norm)

dist(θ̂,θ) = 1−

∥∥∥∥∥ 1

3n

n∑
i=1

θiθ̂
T

i

∥∥∥∥∥
∗

. (4)

(ii) dist(θ̂,θ) is continuous in θ, θ̂; (iii) dist(θ̂,θ) ∈ [0, 1].

(2) Consider the baseline ‘random guessing algorithm’, which draws at each i an independent uniformly

random orthogonal matrix θ̂
RG

i . What is the baseline value D0 = limn→∞ Edist(θ̂
RG

,θ)?

[We don’t require a full proof for this point.]

(3) Derive the maximum likelihood estimator θ̂
ML

(Y ) for this problem. Show that, for σn = 0, dist(θ̂
ML

(Y ),θ) =
0.
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(4) Construct a spectral algorithm θ̂
SP

(Y ) for this problem. Recall that the algorithm must return or-

thogonal matrices θ̂
SP

i (Y ), i ≤ n. Show that, for σn = 0, dist(θ̂
SP

(Y ),θ) = 0.

[Hint: A possible approach is to proceed in two steps. First construct non-orthogonal estimates, and
then ‘round them.’]

(5) Assume σn = na, for some a ∈ R. What is the critical value a∗ for the spectral algorithm? By

this, we mean the value of the exponent such that limn→∞ Edist(θ̂
SP

(Y ),θ) = 0 for a < a∗ while

lim supn→∞ Edist(θ̂
SP

(Y ),θ) > 0 for a > a∗.

Justify your answer as rigorously as you can. Provide heuristics for steps that are not fully proved.

(6) Implement your spectral algorithm and check the conclusion at point (5) via numerical simulations (by
running it for several values of a and of n). Present your results in figures, and submit your code as
well.

[It might be useful to know how to generate θi uniformly random on SO(3). A possible way to do it is
as follows. Generate a random matrix G with i.i.g. entries Gij ∼ N(0, 1), and take its singular value

decomposition G = USV T. Return U .]

(7) Construct a semidefinite programming (SDP) relaxation of the maximum likelihood problem. Define

the SDP estimator θ̂
SDP

(Y ) = (θ̂
SDP

i (Y ))i≤n. Do you think that there exists a critical noise for exact

reconstruction? Namely, is there σ∗∗n > 0 such that dist(θ̂
SDP

(Y ),θ) = 0 with high probability for
σn < σ∗∗n ?

[For the last question (existence of σ∗∗n > 0) we are only expecting an educated guess. Of course, if
you have a proof of your claim, go ahead and write it!]
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