Question (a)

We generated the synthetic data following the problem setting. The table shows that with n increasing, the ratio of average Q becomes larger. The code for part (a) and (b) is listed below.

<table>
<thead>
<tr>
<th>Methods</th>
<th>n=200</th>
<th>n=400</th>
<th>n=800</th>
<th>n=1600</th>
<th>n=3200</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>0.905</td>
<td>0.946</td>
<td>0.971</td>
<td>0.986</td>
<td>0.993</td>
</tr>
<tr>
<td>NMF</td>
<td>0.909</td>
<td>0.949</td>
<td>0.975</td>
<td>0.987</td>
<td>0.992</td>
</tr>
</tbody>
</table>

Table 1: Results over 10 iterations

```python
import numpy as np
import matplotlib.pyplot as plt
from nmf_hw import nmf
import scipy as sp
from scipy.sparse.linalg import svds

d = 200
zeros = np.zeros(d // 2)
ones = np.ones(d // 2)
theta = np.concatenate([zeros, ones])

N = [200, 400, 800, 1600, 3200]
const = np.sqrt(d)
r = 1
Iter = 10

for n in N:
    Q_avg_PCA = 0
    Q_avg_NMF = 0
    for iter in range(Iter):
        np.random.shuffle(theta)
        X = np.zeros((n, d))
        w = np.random.rand(n)
        for i in range(n):
            for j in range(d):
                p = w[i] * theta[j] / const
                Xij = const * np.random.choice(2, p=[1-p, p])
                X[i, j] = Xij

        # PCA
        SIGMA = X.T.dot(X) / n
        U, sigma, VT = sp.sparse.linalg.eigenvectors(SIGMA, k=r)
        # U, sigma, VT = np.linalg.eig(SIGMA)
        # print(sigma)
        # print(U.shape)
        u1 = U[:, 0]
        u1_norm = np.linalg.norm(u1)
        theta_norm = np.linalg.norm(theta)
        Q = np.abs(np.dot(u1, theta)) / (u1_norm * theta_norm)
        # print('n =', n, 'Iter', iter, ',', Q = ', Q)
        Q_avg_PCA += Q

    # NMF
    X_norm = X / (X.sum(axis=1, keepdims=True) + 1e-10)
    Winit = np.random.rand(n, r) + 0.5
    Hinit = np.random.rand(r, d) + 0.5
    W, H = nmf(X_norm, Winit, Hinit, tol=1e-3, maxiter=100)
```
print(H)
print(theta)
h = H[0]
theta_norm = np.linalg.norm(h)
Q = np.abs(np.dot(h, theta)) / (h_norm * theta_norm)
Q_avg_NMF += Q
print('NMF n=', n, ', Q_avg = ', Q_avg_NMF / Iter)
print('PCA n=', n, ', Q_avg = ', Q_avg_PCA / Iter)

Question (b)

We implemented NMF algorithm following the instruction of homework document. Since the name of algorithm is non-negative matrix factorization, we consider using non-negative matrix H and W as initialization. Also, we observe that the algorithm will gradually converge to some points, therefore we regard \(|F(X, H^{t+1}, W^{t+1}) - F(X, H^{t+1}, W^{t+1})| < \text{tol} \) as the convergence criterion. Note that we choose \(10^{-3} \) for both synthetic data as well as MNIST test data.

The result of NMF shows that in most settings, it outperforms the PCA algorithm, except for the n=3200 case.

<table>
<thead>
<tr>
<th>Methods</th>
<th>n=200</th>
<th>n=400</th>
<th>n=800</th>
<th>n=1600</th>
<th>n=3200</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>0.905</td>
<td>0.946</td>
<td>0.971</td>
<td>0.986</td>
<td>0.993</td>
</tr>
<tr>
<td>NMF</td>
<td>0.909</td>
<td>0.949</td>
<td>0.975</td>
<td>0.987</td>
<td>0.992</td>
</tr>
</tbody>
</table>

Table 2: Results over 10 iterations
Question (c)

We first extract the data, and apply PCA on it. From the plots of the 6 principal vectors, we can see numbers mixed up, for example, we can see a dark blue 6 from the first plot, and a dark blue 3 or 8 in the third plots, and a dark blue 9, a yellow 2 from the fourth plots. These implies that the PCA do extract some useful features from the dataset.

```python
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy.sparse.linalg import svds
from nmf_hw import nmf

fname = './mnist_test.csv'
outpath = './'

with open(fname, 'rb') as f:
    data = np.loadtxt(f, delimiter=',')

print(data.shape)
print(data[:, 0])

y = data[:, 0]
x = data[:, 1:]
x_img = x.reshape(-1, 28, 28)

N, d = x.shape
r = 6

"""PCA for MNIST""
SIGMA = x.T.dot(x) / N
U, sigma, VT = sp.sparse.linalg.svds(SIGMA, k=r)
for i in range(r):
    u = U[:, i]
    u_img = u.reshape(28, 28)
    plt.imshow(u_img)
    plt.title(f'PCA r={i+1}')
    plt.colorbar(shrink=0.83)
plt.savefig(outpath + 'PCA r=' + str(i + 1) + '.png', format='png', transparent=True, dpi=300, pad_inches=0)
plt.clf()
plt.close()""
```

Figure 1: PCA for MNIST: r = 1
Figure 2: PCA for MNIST: $r = 2$

Figure 3: PCA for MNIST: $r = 3$

Figure 4: PCA for MNIST: $r = 4$
Figure 5: PCA for MNIST: r = 5

Figure 6: PCA for MNIST: r = 6
Question (d)

We apply the NMF algorithm to MNIST test data. Similar to PCA algorithm, we can see features from the plots. For example, we can see a 'C' like feature in the first plot, and a rough structure of 4 in the second, a line in the third plot, indicating the digit 1, 7, 9. We also see a rough 7 or 9 or 2 in the fourth plot, and a 9 in the fifth plot, and a 1 in the sixth plot. A little bit different from the PCA result is that, NMF tends to extract separate features instead of mixed ones.

```python
# NMF for MNIST
x_norm = x / x.sum(1).reshape(-1, 1)
Winit = np.random.rand(N, r) + 0.5
Hinit = np.random.rand(r, d) + 0.5
W, H = nmf(x_norm, Winit, Hinit, tol=1e-3, maxiter=500)
print(H.shape)
for i in range(r):
    u = H[i, :]
    u_img = u.reshape(28, 28)
    plt.imshow(u_img)
    plt.title('NMF r=' + str(i + 1))
    plt.colorbar(shrink=0.83)
    plt.savefig(f_outpath + 'NMF r=' + str(i + 1) + '.png', format='png', transparent=True, dpi=300, pad_inches=0)
plt.clf()
```
Figure 8: NMF for MNIST: $r = 2$

Figure 9: NMF for MNIST: $r = 3$

Figure 10: NMF for MNIST: $r = 4$
Figure 11: NMF for MNIST: $r = 5$

Figure 12: NMF for MNIST: $r = 6$