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Lecture 12: Global Fano’s method
Lecturer: Yanjun Han Scribe: Wei-Ning Chen

In this lecture, we will introduce global Fano’s method, which allows us to apply Fano’s method without
manually constructing the hypotheses or upper bounding the mutual information. Today’s plan includes

e covering and packing
e packing under target loss = separation condition
e covering under KL divergence = upper bound of mutual information

e examples including nonparametric density estimation, isotonic regression, convex regression, and sparse
linear regression.

1 Covering and packing

We begin by introducing the notion of covering and packing. Let (X, d) be a metric space and A C X be a
compact set. Then a covering and a packing of A are defined as follows.

Definition 1 (Covering). We say that {z1,--- ,x,} C X is an e-covering of A if A C \JI, B(wi,e) (i.e.
for any x € A, there exists i € [n] such that d(z,x;) < e). Moreover, we say

N(g) & N(A,d,e) = min {n : Je-covering of A with size n}
is the covering number of A.

Definition 2 (Packing). We say that {z1,--- ,x,} C A is an e-packing of A if {B (x;,5) :i € [n]} are
pairwise disjoint (i.e. d(x;,x;) > € for all distinct i,3). Moreover, we say

M(e) = M(A,d,e) = max {n : Ie-packing of A with size n}
is the packing number of A.
The next lemma gives a basic property of covering and packing number.
Lemma 3. For any compact set A in a metric space (X,d) and ¢ > 0, we have
M(A,d,2¢) < N(A,d,e) < M(A,d,e).

Proof For the first inequality, assume by contradiction M (A, d,2e) > N(A, D,€). Then by the pigeon-hole
principle, at least two points in the 2e-packing belong to the same e-cover in the covering, but this implies
d(zi,x;) < d(xi,c) + d(z;,c) < 2e. For the second inequality, we claim that any maximal e-packing is an
e-covering. Otherwise, there exists some x € A such that d(z,z;) > €, so one can add z into the the packing
and the resulting larger set is still an e-packing. O

Next, we bound the packing and covering number of A by its volume.

Lemma 4. Let AC X =R? and ||-|| be any norm. Then

1 vol(A) vol(A + eB/2)
=4 vol(B) SN (A [,e) <M (A, |- ,e) < TVol(zB2)

where B is the unit ball under ||| and A+ B2 {a+b:ac€ A, beE B}.



Proof The first inequality holds since A C Uf\il B(x;,¢), so

N
vol(A) < vol (U B(%E)) <N (A, ||, ) vol(B).

=1

On the other hand, the last inequality holds since Uf\il B(z;,e/2) C A+ 22 and the balls are disjoint, so
again we have

M
vol (A+ SZB> > vol (U B(xi,5)> = M (A,]|]|,&) vol(¢B/2).

i=1

For the special case where A = rB, we have

d 2\ @
(5) =sveBa s meB e < (14 7))

- €

so log M (g) =< log N(g) =< dlog (1+ £). Notice that this result only holds when B is the unit ball under the
same norm as the metric space. The next theorem characterizes the metric entropy of £, ball under ||| q
norm.

Theorem 5 ([Schiitt, 1984, Guedon and Litvak, 2000]). For 0 < p < q < oo and dimension d,
= log dei-s , ife > Ji/a—1/p
dlog (1/ (dg%)) . ife < dValp,

Theorem 6 ([Artstein et al., 2004]). Let N (A, B) be the smallest number of translations of B that cover A.
For convex symmetric body A and B = £Bs, there exist a, 5 > 0 such that

og N (By. |1l 2) =pa

B log N (Bg,ofler) <log N(A,eBs) < Blog N(By,acA°),

where A° = {y : sup,c 4 (z,y) < 1} is the polar body of A.

1.1 Example: Gaussian mean estimation under L, loss

Let X4,.,,,.X, L N(0,1;) with unknown # € RY. The goal is to estimate # under general L, loss
L6, T)=|T - 9Hp , p € [1,00].

Claim 7. Let R;“l,d,p be the minimax risk. Then

4 ifl1<p<2,
- dqi/r .
thdm =p \ T if 2 <p < oo,

log d .
VL ifp= oo,

Proof For p = 2, the result follows from the standard two-point method (or LAM theorem). For 1 < p < 2,
the results also hold trivially since ||||p < H||q for 1 < ¢ < p. Next, we apply packing to GLM for p > 2.

If we construct hypotheses in {6 : ||0||, < r} (i.e. supp(mg) = {0 : ||0]|, < r}), then the following mutual
information upper bound holds:

7“2

1(6;X) = jnf By, D (W (0, 12)°" N (0.1)7")] < 5.

Pxn)} < En, {DKL (N (6, 1a)"




We then choose the hypotheses to be uniform distributed on the maximized e-packing in {6 : ||#]|, < 7}, and
thus by Fano’s inequality,

nr? /2 + log 2
log M (B3, |1, )

Vo>0,Ry 4,260 1—

n,d,p ~

Finally, choosing (8,7) to be r =< \/d/n, § < d'/?/\/n for 2 < p < oo, and r =< § < /(logd)/n for p = co
yields the desired results. O

2 Upper bounding /(6; X) via covering

In the previous example, we upper bound the mutual information by restricting ||6]|, < r. The natural next
question is: if § € © almost surely, can we find an upper bound on I(6, X) in a systematic way? It turns out
that the mutual information can be upper bounded by KL covering number (which is the channel capacity
in information theory).

Theorem 8 (KL covering number). For e > 0, let Nk (e) = NkL(0O,¢€) be the smallest integer n such that
there exist distributions Q1, ..., Qn on X such that supyeg min;epy) DrL(Pol|Q:) < e2. Then

. n < : 2 .
I(0; X™) < g% (ne® + log Nki(¢))
Proof According to the golden formula of mutual information,

sl

i=1

I(6;X™) < Eqg

DL <P9®"

where we choose {Q); : i € [n]} to be a minimal KL covering. Then we have

N
1 PP™ (™) PP (™)
®n || — ®n — 6 < : 0
(e 0 = o (g )| < o [y (i) o]

which implies

I(@,X") S E@ |:10gN +n 111[1]{]1] DKL(POHQZ')] S logNKL(E) + TLEQ,
1€

where the last inequality holds since {Q;} is a KL covering on ©. O

We summarize the general steps of applying global Fano’s method.

1. Fix some 6 > 0 and ©¢ C O. Find a d-packing of Oy under the following (pseudo-)metric:

d((gl, 92) £ Hélﬂ L(Gl, a) + L(eg, Cl).

2. Fix some ¢ > 0, find the KL covering of Oy.

3. Apply Fano’s method yields

R, >

*
n

J 1 log Nk (©9,€) + ne? + log 2
2 logM(@o,d, (5)



4. Finally choose the parameters appropriately to make the above bound as large as possible.

Remark In step 4, a rule of thumb is first picking € to make the term log Nk (©¢,¢) + ne? as small as

2
1— log NkL+ne +log2) > %

possible, and then picking ¢ to make the second term ( Tog A7

3 More examples

In this section, we provide several examples to demonstrate the power of global Fano’s method. Although
all the minimax rates are indeed tight, we will only prove the lower bounds part. We refer the readers to
the references for the proof of the upper bounds.

3.1 Example I: nonparametric density estimation
Let X4,..., X, ERg- f with f supported on [0,1]? and being Holder smooth with smoothness parameter
s € [0,00). The goal is to estimate the density f under L, loss, with p € [1,0).

*

n.s.dp has the following rate:

Claim 9. The minimaz risk R

% __s
=~ 2s+d |
n,s,d,p n

Proof In order to lower bound the minimax rate, we apply global Fano’s inequality. To begin with, we
need a bound on metric entropy of the Holder ball H3:

Theorem 10 (Kolmogorov-Tikhomirov).
log N (H;, ||-||p,s) = c=d/s,
Then we control the KL covering number as follows. Let Fy = { f+fr= % everywhere}. Then

2
DL (f 1) <X 1) <20F = f'5,

so log NkL (H3 N Fr,e) <log N (H N Fr,|-|l5 . €). We also compute the L, packing log M (H35 N Fr, |||, 9)

and apply Fano’s inequality:

. >5<1_logN<HznfL,|-||2,a>+n52+1ogz>
e log M (H30 F1, [ 1,9)

/—d/s 2
26(1—06 + ne +log2),
co—d/s

where the last inequality is due to Theorem 10 (we have used a slightly stronger result that the same cover-
ing/packing entropy result holds for HjN ). Finally, by choosing € < § < n™ 2s+4, we arrive at the desired
result. O

3.2 Example II: isotonic regression

Let Xy,.... X, R Px with bounded density on [0,1], and Y; ~ N (f(X;),1). Moreover, assume f : [0,1] —
[0,1] is non-decreasing. The goal is to estimate f under Ly, loss, i.e. L(f,T) = | f — T|, with p € [1,00).



Claim 11. The minimaxz risk R}, , has the following rate:

col=

* ~
R, ,=n

Proof We first upper bound the KL covering number. Observe that as long as Px upper bounded from
above,

1
Dyw (P |P}) = 51 = Flioe) S 1 = 3,

so log Nki (Far,€) S log N (Fas, ||ll5 - €), where Fay = {f:[0,1]¢ = [0,1] : f is non-decreasing} . Therefore
applying global Fano’s method yields

. 2 -1 2
Ry, =6 1_logN(J'-"M,H lly,€) +ne® +log 2 26(1—65 + ne —|—log2),

tog M (Fa, |1, ) ot

where the last inequality is due to the following bound on the covering number:

Theorem 12.

1
IOgN (]:M7 ||.Hp7€> = g

Finally picking ¢ < ¢ < n~'/3 yields the desired result. O

3.3 Example III: convex regression

Let Xq,..., X, "X Py with bounded density on [0,1]? and Y; ~ N(f(X;),1). Further assume that f :
[0,1]% — [0, 1] is convex. The goal again is to estimate f under the L, loss.

Claim 13. The minimaz risk Ry, , . has the following rate:

* — —427@
= +d
n,dp ~ T

Proof The proof is the same as in Example 3.2, except that now we need a bound on the covering number
of Fo = {f:[0,1]¢ = [0,1] : f is convex} (instead of on Fps).

Theorem 14. Let F¢ be defined as above. Then
log N (Fo |, ,2) =< &%

Applying the Theorem 14, together with Fano’s inequality, we obtain

) <1 B ce’d/24/rn52 +log2> .
" c/§—d/2
Optimizing over € and § gives the desired result. O

Remark In fact, N (.7-'0, ||||p , 5) highly depends on the domain of f. If the domain of f is not a polytope,

than the metric entropy may be much higher. For instance, let Fo 2 {f : unit ball — [0,1] : f is convex},
then i
log N (}'c, [IIl,, ,6) = max{e /% e~ (@= 1,



3.4 Example IV: sparse linear regression/prediction

Consider the sparse regression model where the design matrix X € R"*¢ and the response Y ~ X (X4, 1,)
with unknown 6. Further more, assume ||9Hq < R for some g € (0,1). The goal is to minize the estimation

error Lest (0,T) = ||T — 0|, with p € [1,00] or the prediction error Lye(0,T) = | X (T = 0)|, /v/n.

Claim 15. Under appropriate conditions,

logd logd) =

) , and Ry, , , r(prediction) < RY/? (

R}, 4.p.q.r(estimation) < RY/P ( £

Proof Although the second result seems to be a special case of the first result by setting p = 2, these
results impose very different assumptions on the design matrix X.

Estimation error: mild assumption on X First, applying the L, packing bound Theorem 5 on B, (R)
yields
R\7=e , 1/p—1/
logM(Bq(R),||-||p,§> =3 logd, if § > Rd*/?~/14,

Next, we bound the KL covering number. Observe that Dx (Py || Py) = || X (0 — 0’)||§ /2, and from approx-
imation theory, we have

log N (X - By(R), -,2) S 108 N (By(R), Il ¢/v).
provided that || X[, _,, = max;c[q | X;ll, = O(v/n). Therefore applying global Fano’s method, we obtain
_log N (By(R), |Illy s ¢/v/n) + €% + log 2
log M (By(R). |11, 6)

Finally, applying Theorem 5 and optimizing over § and ¢ yield the first result.

R Zd0l1

*
n,d,p,q,R ~

Prediction error: strong assumption on X To lower bound the prediction error, we use the same KL
covering bound. On the other hand, the packing becomes log M (X “By(R), [I]l, 5). However, since we need

a lower bound on the packing entropy, we need a stronger assumption on X:
V0,0' € By(R), || X(0—0)|,>r-vn|0—0|,— (lower order terms)*.
With this additional assumption, we have
log M(X - By(R), I, 9) 2 log M(By(R), | ,/v/):

Similarly, applying Fano’s inequality and Theorem 5 and optimizing over € and § give us the second result. [
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I This is also known as a restricted eigenvalue (RE) condition.



