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Lecture 12: Global Fano’s method
Lecturer: Yanjun Han Scribe: Wei-Ning Chen

In this lecture, we will introduce global Fano’s method, which allows us to apply Fano’s method without
manually constructing the hypotheses or upper bounding the mutual information. Today’s plan includes

• covering and packing

• packing under target loss =⇒ separation condition

• covering under KL divergence =⇒ upper bound of mutual information

• examples including nonparametric density estimation, isotonic regression, convex regression, and sparse
linear regression.

1 Covering and packing

We begin by introducing the notion of covering and packing. Let (X, d) be a metric space and A ⊆ X be a
compact set. Then a covering and a packing of A are defined as follows.

Definition 1 (Covering). We say that {x1, · · · , xn} ⊆ X is an ε-covering of A if A ⊆
⋃n
i=1B(xi, ε) (i.e.

for any x ∈ A, there exists i ∈ [n] such that d(x, xi) ≤ ε). Moreover, we say

N(ε) , N(A, d, ε) , min {n : ∃ ε-covering of A with size n}

is the covering number of A.

Definition 2 (Packing). We say that {x1, · · · , xn} ⊆ A is an ε-packing of A if
{
B
(
xi,

ε
2

)
: i ∈ [n]

}
are

pairwise disjoint (i.e. d(xi, xj) > ε for all distinct i, j). Moreover, we say

M(ε) ,M(A, d, ε) , max {n : ∃ ε-packing of A with size n}

is the packing number of A.

The next lemma gives a basic property of covering and packing number.

Lemma 3. For any compact set A in a metric space (X, d) and ε > 0, we have

M(A, d, 2ε) ≤ N(A, d, ε) ≤M(A, d, ε).

Proof For the first inequality, assume by contradiction M(A, d, 2ε) ≥ N(A,D, ε). Then by the pigeon-hole
principle, at least two points in the 2ε-packing belong to the same ε-cover in the covering, but this implies
d(xi, xj) ≤ d(xi, c) + d(xj , c) ≤ 2ε. For the second inequality, we claim that any maximal ε-packing is an
ε-covering. Otherwise, there exists some x ∈ A such that d(x, xi) > ε, so one can add x into the the packing
and the resulting larger set is still an ε-packing.

Next, we bound the packing and covering number of A by its volume.

Lemma 4. Let A ⊆ X = Rd and ‖·‖ be any norm. Then

1

εd
vol(A)

vol(B)
≤ N (A, ‖·‖ , ε) ≤M (A, ‖·‖ , ε) ≤ vol(A+ εB/2)

vol(εB/2)
,

where B is the unit ball under ‖·‖ and A+B , {a+ b : a ∈ A, b ∈ B}.
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Proof The first inequality holds since A ⊆
⋃N
i=1B(xi, ε), so

vol(A) ≤ vol

(
N⋃
i=1

B(xi, ε)

)
≤ εdN (A, ‖·‖ , ε) vol(B).

On the other hand, the last inequality holds since
⋃M
i=1B(xi, ε/2) ⊆ A + εB

2 and the balls are disjoint, so
again we have

vol

(
A+

εB

2

)
≥ vol

(
M⋃
i=1

B(xi, ε)

)
= M (A, ‖·‖ , ε) vol(εB/2).

For the special case where A = rB, we have(r
ε

)d
≤ N (rB, ‖·‖ , ε) ≤M (rB, ‖·‖ , ε) ≤

(
1 +

2r

ε

)d
,

so logM(ε) � logN(ε) � d log
(
1 + r

ε

)
. Notice that this result only holds when B is the unit ball under the

same norm as the metric space. The next theorem characterizes the metric entropy of `p ball under ‖·‖q
norm.

Theorem 5 ([Schütt, 1984, Guedon and Litvak, 2000]). For 0 < p < q ≤ ∞ and dimension d,

logN
(
Bp, ‖·‖q , ε

)
�p,q

ε
− pq
q−p log

(
dε

pq
q−p

)
, if ε & d1/q−1/p

d log
(

1/
(
dε

pq
q−p

))
, if ε . d1/q−1/p.

Theorem 6 ([Artstein et al., 2004]). Let N(A,B) be the smallest number of translations of B that cover A.
For convex symmetric body A and B = εB2, there exist α, β > 0 such that

β−1 logN
(
B2, α

−1εA◦
)
≤ logN(A, εB2) ≤ β logN(B2, αεA

◦),

where A◦ = {y : supx∈A〈x, y〉 ≤ 1} is the polar body of A.

1.1 Example: Gaussian mean estimation under Lp loss

Let X1, ., , , .Xn
i.i.d.∼ N (θ, Id) with unknown θ ∈ Rd. The goal is to estimate θ under general Lp loss

L(θ, T ) = ‖T − θ‖p , p ∈ [1,∞].

Claim 7. Let R∗n,d,p be the minimax risk. Then

R∗n,d,p �p


√

d
n , if 1 ≤ p ≤ 2,

d1/p√
n
, if 2 < p <∞,√

log d
n , if p =∞.

Proof For p = 2, the result follows from the standard two-point method (or LAM theorem). For 1 < p < 2,
the results also hold trivially since ‖·‖p ≤ ‖·‖q for 1 ≤ q ≤ p. Next, we apply packing to GLM for p > 2.

If we construct hypotheses in {θ : ‖θ‖2 ≤ r} (i.e. supp(πθ) = {θ : ‖θ‖2 ≤ r}), then the following mutual
information upper bound holds:

I(θ;X) = inf
PXn

Eπθ

[
DKL

(
N (θ, Id)

⊗n
∥∥∥PXn)] ≤ Eπθ

[
DKL

(
N (θ, Id)

⊗n
∥∥∥N (0, Id)

⊗n
)]
≤ nr2

2
.
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We then choose the hypotheses to be uniform distributed on the maximized ε-packing in {θ : ‖θ‖2 ≤ r}, and
thus by Fano’s inequality,

∀δ > 0, R∗n,d,p & δ

1− nr2/2 + log 2

logM
(
rB2, ‖·‖p , δ

)
 .

Finally, choosing (δ, r) to be r �
√
d/n, δ � d1/p/

√
n for 2 < p < ∞, and r � δ �

√
(log d)/n for p = ∞

yields the desired results.

2 Upper bounding I(θ;X) via covering

In the previous example, we upper bound the mutual information by restricting ‖θ‖2 < r. The natural next
question is: if θ ∈ Θ almost surely, can we find an upper bound on I(θ,X) in a systematic way? It turns out
that the mutual information can be upper bounded by KL covering number (which is the channel capacity
in information theory).

Theorem 8 (KL covering number). For ε > 0, let NKL(ε) = NKL(Θ, ε) be the smallest integer n such that
there exist distributions Q1, ..., Qn on X such that supθ∈Θ mini∈[n]DKL(Pθ‖Qi) ≤ ε2. Then

I(θ;Xn) ≤ inf
ε>0

(
nε2 + logNKL(ε)

)
.

Proof According to the golden formula of mutual information,

I (θ;Xn) ≤ Eθ

[
DKL

(
P⊗nθ

∥∥∥∥∥ 1

N

N∑
i=1

Q⊗ni

)]
,

where we choose {Qi : i ∈ [n]} to be a minimal KL covering. Then we have

DKL

(
P⊗nθ

∥∥∥∥∥ 1

N

N∑
i=1

Q⊗ni

)
= EPθ

[
log

(
P⊗nθ (xn)

N−1Q⊗ni (xn)

)]
≤ EPθ

[
min
i∈[N ]

log

(
P⊗nθ (xn)

Q⊗ni (xn)

)
+ logN

]
,

which implies

I(θ;Xn) ≤ Eθ

[
logN + n min

i∈[N ]
DKL(Pθ‖Qi)

]
≤ logNKL(ε) + nε2,

where the last inequality holds since {Qi} is a KL covering on Θ.

We summarize the general steps of applying global Fano’s method.

1. Fix some θ > 0 and Θ0 ⊆ Θ. Find a δ-packing of Θ0 under the following (pseudo-)metric:

d(θ1, θ2) , min
a∈A

L(θ1, a) + L(θ2, a).

2. Fix some ε > 0, find the KL covering of Θ0.

3. Apply Fano’s method yields

R∗n ≥
δ

2

(
1− logNKL (Θ0, ε) + nε2 + log 2

logM(Θ0, d, δ)

)
.
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4. Finally choose the parameters appropriately to make the above bound as large as possible.

Remark In step 4, a rule of thumb is first picking ε to make the term logNKL (Θ0, ε) + nε2 as small as

possible, and then picking δ to make the second term
(

1− logNKL+nε
2+log 2

logM

)
> 1

2 .

3 More examples

In this section, we provide several examples to demonstrate the power of global Fano’s method. Although
all the minimax rates are indeed tight, we will only prove the lower bounds part. We refer the readers to
the references for the proof of the upper bounds.

3.1 Example I: nonparametric density estimation

Let X1, ..., Xn
i.i.d.∼ f with f supported on [0, 1]d and being Hölder smooth with smoothness parameter

s ∈ [0,∞). The goal is to estimate the density f under Lp loss, with p ∈ [1,∞).

Claim 9. The minimax risk R∗n,s,d,p has the following rate:

R∗n,s,d,p � n−
s

2s+d .

Proof In order to lower bound the minimax rate, we apply global Fano’s inequality. To begin with, we
need a bound on metric entropy of the Hölder ball Hsd:

Theorem 10 (Kolmogorov-Tikhomirov).

logN
(
Hsd, ‖·‖p , ε

)
� ε−d/s.

Then we control the KL covering number as follows. Let FL ,
{
f : f ≥ 1

2 everywhere
}

. Then

DKL (f ‖f ′) ≤ χ2(f, f ′) ≤ 2 ‖f − f ′‖22 ,

so logNKL (Hsd ∩ FL, ε) � logN (Hsd ∩ FL, ‖·‖2 , ε). We also compute the Lp packing logM (Hsd ∩ FL, ‖·‖2 , δ)
and apply Fano’s inequality:

R∗n,s,d,p & δ

(
1−

logN (Hsd ∩ FL, ‖·‖2 , ε) + nε2 + log 2

logM (Hsd ∩ FL, ‖·‖2 , δ)

)
≥ δ

(
1− c′ε−d/s + nε2 + log 2

cδ−d/s

)
,

where the last inequality is due to Theorem 10 (we have used a slightly stronger result that the same cover-
ing/packing entropy result holds for Hsd∩FL). Finally, by choosing ε � δ � n−

s
2s+d , we arrive at the desired

result.

3.2 Example II: isotonic regression

Let X1, ..., Xn
i.i.d.∼ PX with bounded density on [0, 1], and Yi ∼ N (f(Xi), 1). Moreover, assume f : [0, 1]→

[0, 1] is non-decreasing. The goal is to estimate f under Lp loss, i.e. L(f, T ) = ‖f − T‖p with p ∈ [1,∞).
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Claim 11. The minimax risk R∗n,p has the following rate:

R∗n,p � n−
1
3 .

Proof We first upper bound the KL covering number. Observe that as long as PX upper bounded from
above,

DKL

(
Pf
∥∥P ′f) =

1

2
‖f − f ′‖2L2(PX) . ‖f − f

′‖22 ,

so logNKL (FM , ε) . logN (FM , ‖·‖2 , ε), where FM ,
{
f : [0, 1]d → [0, 1] : f is non-decreasing

}
. Therefore

applying global Fano’s method yields

R∗n,p � δ

1−
logN (FM , ‖·‖2 , ε) + nε2 + log 2

logM
(
FM , ‖·‖p , δ

)
 ≥ δ(1− cε−1 + nε2 + log 2

c′δ−1

)
,

where the last inequality is due to the following bound on the covering number:

Theorem 12.

logN
(
FM , ‖·‖p , ε

)
� 1

ε
.

Finally picking ε � δ � n−1/3 yields the desired result.

3.3 Example III: convex regression

Let X1, ..., Xn
i.i.d.∼ PX with bounded density on [0, 1]d and Yi ∼ N (f(Xi), 1). Further assume that f :

[0, 1]d → [0, 1] is convex. The goal again is to estimate f under the Lp loss.

Claim 13. The minimax risk R∗n,d,p has the following rate:

R∗n,d,p � n−
2

4+d .

Proof The proof is the same as in Example 3.2, except that now we need a bound on the covering number
of FC ,

{
f : [0, 1]d → [0, 1] : f is convex

}
(instead of on FM ).

Theorem 14. Let FC be defined as above. Then

logN
(
FC , ‖·‖p , ε

)
� ε− d2 .

Applying the Theorem 14, together with Fano’s inequality, we obtain

R∗n,p & δ

(
1− cε−d/2 + nε2 + log 2

c′δ−d/2

)
.

Optimizing over ε and δ gives the desired result.

Remark In fact, N
(
FC , ‖·‖p , ε

)
highly depends on the domain of f . If the domain of f is not a polytope,

than the metric entropy may be much higher. For instance, let F̃C , {f : unit ball→ [0, 1] : f is convex},
then

logN
(
F̃C , ‖·‖p , ε

)
� max{ε−1/2, ε−(d−1)}.
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3.4 Example IV: sparse linear regression/prediction

Consider the sparse regression model where the design matrix X ∈ Rn×d, and the response Y ∼ X (Xθ, In)
with unknown θ. Further more, assume ‖θ‖q ≤ R for some q ∈ (0, 1). The goal is to minize the estimation

error Lest (θ, T ) = ‖T − θ‖p with p ∈ [1,∞] or the prediction error Lpre(θ, T ) = ‖X(T − θ)‖2 /
√
n.

Claim 15. Under appropriate conditions,

R∗n,d,p,q,R(estimation) � Rq/p
(

log d

n

) p−q
2p

, and R∗n,d,q,R(prediction) � Rq/2
(

log d

n

) 2−q
4

.

Proof Although the second result seems to be a special case of the first result by setting p = 2, these
results impose very different assumptions on the design matrix X.

Estimation error: mild assumption on X First, applying the Lp packing bound Theorem 5 on Bq(R)
yields

logM
(
Bq(R), ‖·‖p , δ

)
�
(
R

δ

) pq
p−q

log d, if δ � Rd1/p−1/q.

Next, we bound the KL covering number. Observe that DKL (Pθ ‖Pθ′) = ‖X(θ − θ′)‖22 /2, and from approx-
imation theory, we have

logN (X ·Bq(R), ‖·‖2 , ε) . logN
(
Bq(R), ‖·‖2 , ε/

√
n
)
,

provided that |||X|||1→2 = maxj∈[d] ‖Xj‖2 = O(
√
n). Therefore applying global Fano’s method, we obtain

R∗n,d,p,q,R & δ

1−
logN (Bq(R), ‖·‖2 , ε/

√
n) + ε2 + log 2

logM
(
Bq(R), ‖·‖p , δ

)
 .

Finally, applying Theorem 5 and optimizing over δ and ε yield the first result.

Prediction error: strong assumption on X To lower bound the prediction error, we use the same KL

covering bound. On the other hand, the packing becomes logM
(
X ·Bq(R), ‖·‖p δ

)
. However, since we need

a lower bound on the packing entropy, we need a stronger assumption on X:

∀ θ, θ′ ∈ Bq(R), ‖X(θ − θ′)‖2 ≥ κ ·
√
n ‖θ − θ′‖2 − (lower order terms)1.

With this additional assumption, we have

logM(X ·Bq(R), ‖·‖p , δ) & logM(Bq(R), ‖·‖2 , δ/
√
n).

Similarly, applying Fano’s inequality and Theorem 5 and optimizing over ε and δ give us the second result.

References

[Artstein et al., 2004] Artstein, S., Milman, V., and Szarek, S. J. (2004). Duality of metric entropy. Annals
of mathematics, pages 1313–1328.

[Guedon and Litvak, 2000] Guedon, O. and Litvak, A. (2000). Euclidean projections of a p-convex body. In
Geometric aspects of functional analysis, pages 95–108. Springer.
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