Design for Yield Using Statistical Design

Fabian Klass
Director of Technology and Manufacturing

EE 380 Computer Systems Colloquium, Stanford University
February 7, 2007
Outline

- About P.A.Semi
- Process Variability
- Statistical Models
- Circuit Examples
- Statistical Timing
- PVT Margin
- Test Structures
- CAD Challenges
- Summary
About P.A. Semi

- Santa Clara-based fabless processor company
 - Power Architecture™ Licensee
 - Design our own Power Architecture processors
 - Only 3rd company after IBM and Freescale
 - Noted industry veterans combine in 150-strong organization
 - Venture backed by Bessemer, Venrock, and Highland Capital
 - Currently engaged with over 100 customers across different market segments

- Strategically partnered with IBM

- Breakthrough processor solution focused on low power @ high performance
 - Scalable 64-Bit Power multicore architecture
 - Redefines high performance (2GHz) at ultra low power (4W)
 - 39 patents filed and 11 more patents in progress towards filing
Target Markets

Critical Requirements
- Power Efficiency
- High Performance
- Cost Efficiency
- Throughput Efficiency
- Open source OS/Tools etc

Target Markets:
- Compute Server Blades
- Digital Entertainment
- Embedded Boards
- Routers
- Game Players
- Switches
- Imaging Systems
- Storage Systems
- Wireless Basestations
The Challenge

Power Management

Process Variability
Three main reasons why process variability has become so important:

- **Moore's law:**
 - Exponential growth in device integration
 - Billions of devices per die in 65nm and beyond

- **Shrinking devices:**
 - Gate oxides approaching a few Angstroms
 - Fewer dopants under the gate (~10^2)

- **Ultra low VDD:**
 - VDD scaling < 1V to manage power.
 - Vt not scaling, limited by leakage.
 - Less headroom, more sensitivity to ΔVt.
Process Variation

- **Global**: die-to-die, wfr-to-wfr, and lot-to-lot variations caused by changes in:
 - Tox
 - Xtor W & L
 - N/PWELL doping
 - N/PMOS flatband voltage
 - Stress-induced effects

- **Local**: within-the-die variations caused by:
 - Xtor W & L mismatch
 - Vt mismatch
 - ACLV
Width and Length Mismatch

- Caused by variations in the lithographic process
- Width and Length variations are uncorrelated
- Small transistors more sensitive to W/L changes

65nm CMOS NAND cell

Intel 65nm 6T SRAM cell
Vth Mismatch

- Random fluctuations due to relatively small number of dopants in the channel
- Vth variance is inversely proportional to transistor area
- Pelgrom's Law:

\[
\sigma(V_{th}) = K / \sqrt{W \times L}
\]

- Provided by most foundries
- More realistic than corner models.
- Cover the full design space.
- Foundries typically offer a 3σ process.
- The number of local sigma is determined by the designer.
Monte Carlo

- Monte Carlo involves simulating a circuit over a wide range of randomly chosen devices parameters.
- The result is a distribution plot of design constraints, e.g., delay or noise margin.
- Typically tens of thousands simulations needed, including Vdd and Temp sweeps.

![Graph showing distribution of delay vs. Vth.](image-url)
When to use statistical analysis

- Usage limited to **process-sensitive** circuits:
 - Races
 - Contention
 - Mismatch

- Usage limited to **high-usage** circuits:
 - SRAM cells
 - Register file cells
 - Flip-flops
 - Sensamps

- Usage limited to **highly-critical** circuits:
 - Max and min critical paths
How many Sigmas?

Failure criteria:

\[(\mu - N \sigma - M \sigma_L) > \text{Safe Margin}\]

where:

- \(\mu\) is the mean
- \(N\) is determined by the foundry and is typically 3.
- \(M\) is determined by the number of instances of the circuit being analyzed:

<table>
<thead>
<tr>
<th># of instances</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.33</td>
</tr>
<tr>
<td>1,000</td>
<td>3.09</td>
</tr>
<tr>
<td>10,000</td>
<td>3.72</td>
</tr>
<tr>
<td>100,000</td>
<td>4.26</td>
</tr>
<tr>
<td>1,000,000</td>
<td>4.75</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5.20</td>
</tr>
</tbody>
</table>

Example: 1MB SRAM needs \(M=5\) sigma for the bit design.
Example 1: 6T SRAM Cell

- Find stable VDD window for 6T SRAM cell (1MB)

Flow:
- Run Monte Carlo SNM sims
- Find \(\mu, \sigma_G, \) & \(\sigma_L \) across VDD
- Define safe margin
- Plot 3\(\sigma_G \) and 5\(\sigma_L \) curves
- Find Vdd window where SNM > Safe margin.
Example 2: Sense Amplifier

- Find min V_{DIFF} for sensamp

Flow

- Run Monte Carlo
- Plot passing ratio vs. ΔV_{in}
- Find μ & σ_L for sensamp
- Find μ & σ_L for SRAM I_{read}
- Min V_{DIFF}:

$$V_{\text{DIFF}} = \frac{\sigma_{\text{SA}}}{\sqrt{1 - (M \times \sigma_{\text{Iread}} / \mu_{\text{Iread}})^2}}$$
Other Circuits

Other possible applications for statistical circuit design:
- Dynamic logic
- Latches
- Register files cells
- Pulsed flops
- Level shifters
- Analog circuits

Advantages:
- All circuits designed to a target sigma
- Avoid weak links
- Avoid overdesign
Statistical Timing

- Each gate has a mean and sigma. Sigmas can be computed using Monte Carlo.
- The sigma of a path is determined by adding (i.e., sum-square) the sigmas of individual gates.

\[\sigma_{\text{Path}} = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2} \]
Speed Distribution

- Each chip has a local distribution on top of the global distribution due to local variations.
- Not all parts within a $[+3\sigma, -3\sigma]$ window will yield above target due to local variations.
OCV Ratio and Yield

- On-chip Variability (OCV) = σ_{Local}
- OCV Ratio = $\frac{\sigma_{\text{Local}}}{\sigma_{\text{Global}}}$
- Speed yield strongly dependent on OCV ratio
Yield Examples

- Speed yield is affected by the shape of the timing histogram:

These three histograms have very different speed yields (OCV Ratio=1.5):

These three histograms have the same speed yield (OCV Ratio=0.9):
Margining Races

- Races need to be margined for PVT variations.
- Fixed PVT margin (conventional):

\[D_{21} = D_2 - D_1 + m \times (D_1 + D_2 + D_{21}) \]

- Fixed PVT sigma:

\[D_{21} = D_2 - D_1 + M \sigma \sqrt{(D_1 + D_2 + D_{21})} \]

- Drawbacks of fixed margin:
 - Pessimistic for long delays
 - Optimistic for short delays

- Advantages of fixed sigma:
 - Accurate (pseudo-statistical)
 - M can be tuned for a specific design
Fixed sigma:
- PVT margin varies with the logic depth
- PVT margin varies with Vdd

![Graph showing PVT margin variation with logic depth and Vdd](image-url)
Test structures were developed to measure process variability.

A testchip was built in a 65nm, triple-Vt, dual-oxide CMOS process.

Data was collected across dies, wafers, lots, and across voltage and temperature.

Measured data was used to:

- Validate statistical SPICE models
- Monitor process development
- Determine design margins
- Predict circuit limited yield
A Racer circuit measures on-die process variations in Si.

> 100 copies of the Racer module are placed across the die.

The spread in the location of the leading “1” provides an indication of the process variability.
Racer Results

- Racer data shows large spreads at low Vdd.
- Data can be used to predict circuit yield across Vdd.
- Low Vdd is the yield limiter!
A Leaker Circuit

A Leaker circuit measures leakage spread (Ioff/Ion) in Si.

It measures Ioff/Ion by sensing a tied-off skewed inverter with a 2P:1N inverter and latching to a flop.

Multiples copies of the leaker module are placed on the die.

Separate modules are used for standard Vt, low Vt, and high Vt devices.
Leaker Results

- Leaker data was collected across voltage and temperature.
- Distributions were generated and μ/σ data was obtained.
- I_{off}/I_{on} ratio worse at low Vdd for all Vt devices
- I_{off}/I_{on} ratio worse at high temperature for all Vt devices
CAD Challenges

Applications for statistical design:
- Timing
- Power
- ERC
- Reliability

Main Challenges:
- Run time: Running Monte Carlo on a library would take years!
- Tools need to be 'context aware': Ex: Timing optimization depends on the shape of the timing histogram

Pseudo-statistical approach
- Using statistical methods without running Monte Carlo.
CAD Challenges (cont.)

- Cell based designs
 - Library characterization should produce μ, σ.
 - Timing analyzer output should be speed yield.

- Transistor level design
 - In-situ characterization to generate μ, σ
 - Timing analyzer to create μ, σ for macro

- ERC/Reliability
 - Statistically derived design rules
 - Waivers based on distributions and yield impact

- Yield, Yield, Yield
 - Tools should predict yield as a metric for signoff.
Tool Integration

- Integration of DFM and DFY tools to predict:
 - Manufacturing yield
 - Functional Yield
 - Speed yield
 - Overall product yield

Validation

- Validation of DFY tools in Silicon
- Justification of investment
Summary

- Ignoring process variability may lead to non-functional designs or suboptimal yields.
- DFY will become more relevant as Vdd continues to scale and device geometries keep shrinking.
- Circuit solutions alone will not be sufficient if Moore's law continues.
- Process variability need to be handled at higher levels of the design process
- Future designs will incorporate:
 - Self-checking logic
 - Self-correcting logic
 - Redundant logic (besides SRAMs)
 - Wearout compensation mechanisms.
Thank You

The P.A. Semi name and the P.A. Semi logo and combinations thereof are trademarks of P.A. Semi, Inc. The Power name is a trademark of International Business Machines Corporation, used under license therefrom. SPECint and SPECfp are registered trademarks of the Standard Performance Evaluation Corporation (SPEC). All other trademarks are the property of their respective owners.