
Copyright © 2007 PeakStream, Inc. All rights reserved.

The PeakStream Platform for
Many-Core Computing

Matthew Papakipos
Engineering Director

Google

previously CTO
PeakStream, Inc.

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 2

PeakStream History

» PeakStream

• Startup company

• Founded February 2005

• 35 people

• Based in silicon valley

» PeakStream Mission Statement

• Provide a software platform for High Performance Computing that
unlocks the power of a new generation of processors, from GPUs to
multi-core CPUs

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 3

The PeakStream Team

» Founder: Matthew Papakipos

• Former NVIDIA Director of GPU Architecture: NV20 & NV40 Lead, XBox

• Graphics software standards: OpenGL & DirectX

• Supercomputers: MasPar & Connection Machine

» Chief Scientist: Pat Hanrahan

• Stanford computer science professor

• Led the Brook project (more on this later)

» Brian Grant

• Software architect, compiler expert

• Formerly at Transmeta

» Chris Demetriou

• Software architect, systems expert

• Formerly at SiByte/Broadcom, NetBSD

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 4

Google & PeakStream

» PeakStream was acquired by Google in May, 2007

• Existing product line sales were discontinued

• PeakStream’s future is as part of Google

» This presentation is a bit of history

• The founding of the PeakStream

• The technology

• The product

• The Stanford connection

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 5

Before PeakStream: Setting the Stage

» The landscape before we founded the company

• GPUs had 10x the flops of CPUs: nv40 vs. pentium 4

• Stanford had demonstrated the Brook project

• Lots of buzz about “GPGPU”: What else can GPUs do?

» Brook

• What was Brook?

• Research developed in the Stanford Graphics Lab

» Pat Hanrahan, Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,

Mike Houston, Kayvon Fatahalian

• Demonstrated HPC codes running on GPUs

» Using compiler technology to make it work

• An open source project today

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 6

Many-Core Processors

» There is a large category of Many-Core Processors

• GPUs: AMD & NVIDIA

• IBM Cell Processor

• Many-core CPUs: AMD & Intel

• Future: AMD Fusion Processor = CPU+GPU Integration

» Processor characteristics

• High memory bandwidth

• Extremely high flops

• High flop to memory access ratio

• On-chip communication network

» Why use many-core processors?

• Performance

• Power

• Cost

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 7

Many-Core Processors

» Are many-core processors new?

• No

» Also called Stream Processors

• Imagine Processor, Bill Daly et al, Stanford

• Merrimack Architecture, Bill Daly et al, Stanford

• SPI, Chief Scientist: Bill Daly

» GPU architecture was heavily influenced by Stream Processors

• As is the IBM Cell processor

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 8

Who Wants All These FLOPs?

» Gaming

• Physics

• Image Processing

• AI? This has not yet been demonstrated, but it’s intriguing

» Image Processing

• Image & Video Editing

• Consumer & Professional

» High Performance Computing

• Applications are solving big science problems numerically

• Server compute farms: from 1,000s to 100,000s of CPUs

• Workstations: CAD & Content. These have GPUs already

• Embedded: Medical & Defense

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 9

What is High Performance Computing?

» HPC uses computation to solve a science problem

• Oil & Gas: Seismic analysis, reservoir modeling…

• Finance: Monte carlo Simulations…

• Biology: Molecular modeling, sequence matching…

• Engineering: Fluid synamics…

• Government Labs: Stockpile simulation, climate…

» Who are HPC Developers?

• Mostly scientists, but not computer scientists

• Mostly not parallel programming experts

• Mostly like programming in MatLab

• They are more interested in their science than in they are in
optimizing a computer program

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 10

What’s Wrong with Multi-Core CPUs and GPUs?

» Developer Productivity

• Most developers do not know how to write fast numerical codes

• Making x86 run fast is hard. GPUs are even harder.

• Developing threaded applications is hard (OpenMP & pthreads)

• Writing message-passing applications is very hard (MPI, Cell)

» University curricula in numerical computing have shifted to high
productivity languages

• MatLab: This is the tool of choice in hard sciences

• Scientists no longer learn Fortran

• Scientists are not computer scientists

• Scientists are not parallel programming experts

• Observation: MatLab is not a high performance system

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 11

The PeakStream Programming Model

» We call it Stream Programming

• A data-parallel programming model

• With an explicit I/O model

• For many-core processors

» High performance

• The raison d’etre!

» Portable

• Across processor vendors, across processor generations

• (But does require significant effort by PeakStream)

» Interoperable

• Leverage existing libraries, tools, and systems (MPI, gcc, etc.)

» High productivity

• Minimize time to solution

• For scientists & mathematicians

• Tools are important: debugger & profiler

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 12

The PeakStream Platform™

1. API modeled on
standard HPC interface
conventions.

- Minimal learning curve

- Minimal training costs

3. API is standard C/C++

- No new tools to buy
- No new tools to train

2. Virtual Machine abstracts
hardware specifics from
developer. One binary
works across:
- Multiple HW generations

- Multiple HW providers

4. Platform runs on
unmodified industry
standard OS’s

- No kernel hacks

- No system software
- Transparent to

clustering software

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 13

int Conj_Grad_GPU_PS(int N, float *cpuA, float *cpux, float *cpub)

{

int iter;

Arrayf32 x = Arrayf32::zeros(N);

{

Arrayf32 A = Arrayf32::make2(N, N, cpuA);

Arrayf32 b = Arrayf32::make1(N, cpub);

Arrayf32 residuals = b - matmul(A, x) ;

Arrayf32 p = residuals;

Arrayf32 newRR = dot_product(residuals, residuals);

for (iter = 0; iter < N; iter++) {

Arrayf32 oldRR = newRR;

Arrayf32 newX, newP, newResiduals;

Arrayf32 Ap = matmul(A, p);

Arrayf32 dp = dot_product(p, Ap);

newX = x + p * oldRR / dp;

newResiduals = residuals - Ap * oldRR / dp;

newRR = dot_product(newResiduals, newResiduals);

newP = newResiduals + p * newRR / oldRR;

p = newP;

residuals = newResiduals;

float oldRRcpu = oldRR.read_scalar();

if(oldRRcpu <= TOLERANCE) {

break;

}

x = newX;

}

}

x.read1(cpux, N * sizeof(float));

return iter;

}

int Conj_Grad_GPU_PS(int N, float *cpuA, float *cpux, float *cpub)

{

int iter;

Arrayf32 x = Arrayf32::zeros(N);

{

Arrayf32 A = Arrayf32::make2(N, N, cpuA);

Arrayf32 b = Arrayf32::make1(N, cpub);

Arrayf32 residuals = b - matmul(A, x) ;

Arrayf32 p = residuals;

Arrayf32 newRR = dot_product(residuals, residuals);

for (iter = 0; iter < N; iter++) {

Arrayf32 oldRR = newRR;

Arrayf32 newX, newP, newResiduals;

Arrayf32 Ap = matmul(A, p);

Arrayf32 dp = dot_product(p, Ap);

newX = x + p * oldRR / dp;

newResiduals = residuals - Ap * oldRR / dp;

newRR = dot_product(newResiduals, newResiduals);

newP = newResiduals + p * newRR / oldRR;

p = newP;

residuals = newResiduals;

float oldRRcpu = oldRR.read_scalar();

if(oldRRcpu <= TOLERANCE) {

break;

}

x = newX;

}

}

x.read1(cpux, N * sizeof(float));

return iter;

}

PeakStream Programming Essentials

APIs look like Intel MKL,
Fortran, and Matlab

functions

Data expressed as Arrays of
32 or 64 bit floating point

numbers

Operator overloading
converts operators into data

parallel operators

“make” and “write” functions
move data onto the GPU for

processing

Stream arrays are opaque.
Data is copied back to system

memory with “read” calls

Learnable in hours, proficient in days

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 14

Why an API?

» New languages are rarely adopted
• They have steep learning curve
• They require new software ecosystems

» Compilers

» Tools

» Libraries

• Language extensions are new languages
» Definition of a new language: “won’t compile with an existing compiler”

» APIs are much easier to adopt
• APIs are language-neutral

» They allow people to use their favorite languages

» They allow multiple language bindings: C, C++, Fortran, Java, ...

• APIs facilitate interoperability with existing software ecosystems
» MPI, OpenMP, MKL, ACML, ...

• APIs and languages are equally expressive

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 15

Virtual Machine with Dynamic Compilation

» Dynamic compilation facilitates binary portability

» Across processor vendors

• Dynamically compile and optimize for the processor at hand

• NVIDIA and ATI GPUs have totally different ISAs

• GPUs and CPUs have very different ISAs and OS interfaces

» Across processor generations

• Processors change faster than applications

• Want applications to automatically get faster as hardware gets
faster

• But GPU ISAs change completely from one generation to the next

• Even x86 adds new instructions: SSE[1,2,3,4]

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 16

Dynamic Compilation Well Suited for HPC

» Dynamic compilation is now commonplace

• GPU drivers

• Java and .NET

• Transmeta

• VMware, XenSource

» Dynamic compilation is fast

• VMware running windows boots in 30 seconds

» Just 1 second of that is JIT code translation

» Code caching is tremendously effective for HPC

• Long running

• Highly repetitive

» JIT overhead easily amortized for HPC

• High data-to-code ratio

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 17

Computing ππππ with PeakStream

#include <peakstream.h>

#define NSET 1000000 // number of monte carlo trials

Arrayf32 Pi = compute_pi(); // get the answer as a 1x1 array

float_pi = Pi.read_scalar(); // convert answer to a simple float

printf("Value of Pi = %f\n", pi);

Arrayf32

compute_pi(void)

{

RNGf32 G(SP_RNG_DEFAULT, 271828); // create an RNG

Arrayf32 X = rng_uniform_make(G, NSET, 1, 0.0, 1.0);

Arrayf32 Y = rng_uniform_make(G, NSET, 1, 0.0, 1.0);

Arrayf32 distance_from_zero = sqrt(X * X + Y * Y);

Arrayf32 inside_circle = (distance_from_zero <= 1.0f);

return 4.0f * sum(inside_circle) / NSET;

}

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 18

What the Compiler Does: Generate Compute Kernels

» Compiler outputs a series of Compute Kernels

• And the VM executes them on the processor

» A compute kernel is structured as:

• Gather

• Compute

• Scatter

» Maximize flops/kernel

• Minimize memory bandwidth requirements

• Avoid the processor memory wall

» All of this is done automatically by the PeakStream JIT Compiler

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 19

The Stream Programming Paradigm

» Computation expressed as composition of compute kernels:

• Gather phase

• Compute phase

• Scatter phase

» Translates memory latency into memory bandwidth

• Able to exploit processors with high compute/memory access ratios

kernel 1

kernel 2

minimize memory access

maximize compute per kernel

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 20

Computing ππππ with PeakStream

» This is the code the VM generates and runs:

pass 1:pass 1: pass 2:pass 2: pass 3:pass 3: pass 4:pass 4: pass 5:pass 5: pass 6:pass 6:

reduction passesreduction passesRNG & elementRNG & element--wise ops.wise ops. final final ππ calculationcalculation

PS_OUTPUT main(float2 THR_ID : VPOS) {PS_OUTPUT main(float2 THR_ID : VPOS) {

PS_OUTPUT output;PS_OUTPUT output;

float4 tmp0, tmp1, tmp2, tmp3, tmp4, float4 tmp0, tmp1, tmp2, tmp3, tmp4,

tmp5, tmp6, tmp7, tmp8, tmp9, tmp5, tmp6, tmp7, tmp8, tmp9,

tmp10;tmp10;

tmp0 = CEICG12m6_1d(in0, THR_ID, tmp0 = CEICG12m6_1d(in0, THR_ID,

inC0, inC1, inC2, inC3, inC4, inC0, inC1, inC2, inC3, inC4,

inC5, out0_pad);inC5, out0_pad);

tmp1 = smk32_mul(tmp0, inC6.x);tmp1 = smk32_mul(tmp0, inC6.x);

tmp2 = smk32_add(tmp1, inC7.x);tmp2 = smk32_add(tmp1, inC7.x);

tmp3 = smk32_mul(tmp2, tmp2);tmp3 = smk32_mul(tmp2, tmp2);

tmp4 = CEICG12m6_1d(in0, THR_ID, tmp4 = CEICG12m6_1d(in0, THR_ID,

inC8, inC9, inC10, inC11, inC12, inC8, inC9, inC10, inC11, inC12,

inC13, out0_pad);inC13, out0_pad);

tmp5 = smk32_mul(tmp4, inC14.x);tmp5 = smk32_mul(tmp4, inC14.x);

tmp6 = smk32_add(tmp5, inC15.x);tmp6 = smk32_add(tmp5, inC15.x);

tmp7 = smk32_mul(tmp6, tmp6);tmp7 = smk32_mul(tmp6, tmp6);

tmp8 = smk32_add(tmp3, tmp7);tmp8 = smk32_add(tmp3, tmp7);

tmp9 = smk32_sqrt(tmp8);tmp9 = smk32_sqrt(tmp8);

tmp10 = smk32_le(tmp9, inC16.x);tmp10 = smk32_le(tmp9, inC16.x);

output.out0 = tmp10;output.out0 = tmp10;

return output;return output;

}}

Detail of pass 1Detail of pass 1

GPU code:GPU code:

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 21

Automatic Stream Kernel Synthesis

» Identifying the streaming kernel

• What’s the granularity of the inner loop?

• How many GPU passes are optimal?

» It’s inappropriate for the application to pick

• It is very processor-dependent

• Depends on processor family, model, memory, ...

» This is a good task for compilers

• This is what the PeakStream JIT compiler does

• Ensures portability of application code

• Ensures scalable performance over many processors

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 22

PeakStream Software Architecture

Application Binary

memory

manager

instrument

& analyze

scheduler

api

executor

JIT

compiler

Stream Virtual

Machine

math

libs

profiler &

debugger

GPU
Compiler

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 23

PeakStream Platform Functionality

» Linux: Redhat Enterprise Linux, CentOS, gcc, gdb, icc

» Windows: WinXP SP2, Visual Studio, icc

» C/C++

Platforms & language
support

Utility functions

» Data transfer

» Performance hints

» VM management

» Debug APIs

Array generation

» Identity and zero arrays

» Random number arrays

» Data stride

Linear Algebra

» Dot product/Transpose

» Matmul

» LU & Cholesky Solvers

Signal processing

» Convolution

» Multiple border options

» 1D, 2D FFTs

BLAS

» Full BLAS equivalance

» Levels 1/2/3

Array Reduction & Statistics

» Sum/Min/Max

» Mean/Variance/Std Dev

» Random number generators

Array Manipulation

» Attribute queries

» Gather/Spread

» Indexing

Trigonometry

» Standard trigonometry

» Inverse trigonometry

» Hyperbolic functions

Standard Math

» Standard operators

» Range of logarithms

» Exp, powers, roots

» Rounding, abs etc.

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 24

Mandelbrot Fractal

Arrayf32 Iter = -1;

Arrayf32 XP = (Arrayf32::index(0,pixels_x,pixels_y)-pixels_x/2);

Arrayf32 YP = (Arrayf32::index(1,pixels_x,pixels_y)-pixels_y/2);

Arrayf32 Xprime = XP*cos(phi) - YP*sin(phi);

Arrayf32 Yprime = YP*cos(phi) + XP*sin(phi);

XP = Xprime/(pixels_x*zoom)+cx;

YP = Yprime/(pixels_x*zoom)+cy;

for (int iteration=0; iteration<max_iter; iteration++)

{

// Iterate

Arrayf32 Y=2*X*Y+YP;

Arrayf32 X=X*X-Y2+XP;

Arrayf32 Y2=Y*Y;

// Test for escape condition

Arrayf32 Eval = cond(X*X+Y2<4,0,1);

Iter = cond(Iter<0&&Eval>0,iteration,Iter);

}

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 25

PeakStream Linux Tools Extensions

Debugger: gdb Extensions

» Debug PeakStream applications with
a plug-in to the standard gdb

debugger

» Set breakpoints

» Step through code executing on

GPU & CPU

» Examine arrays resident on the GPU

» Generate reference results to

compare GPU execution to CPU

execution

» Trap runtime errors

Profiler: Collection and Analysis

» Insight into optimization potentials

» gprof style tool for analyzing
application performance

» Shows time spent per line and per

function

» Pinpoints excess data movement

from system to local memory

» View stream processor compute

kernels

» Analyze memory utilization

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 26

PeakStream Debugger

» GDB debugger extensions to monitor PeakStream arrays

» Script provided for access
ps_gdb program

» DDE (Debugger Data Examination)
psprint array (print contents of SP array)

SP::DDE::get_array_element(A, idx0, idx1)

SP::DDE::read1(A, outptr, size, stride)

SP::DDE::read2(A, outptr, size, stride, pad)

SP::DDE::write_array_to_file(A, filename)

» Error handlers

• Either handle from your application or catch in the debugger

» Generate reference results

• To compare GPU to CPU results

• From your debugger session or your application

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 27

PeakStream Profiler

»A gprof-style application profiler

» Usage:

• ps_analyzer [options] [> outfile]

»3 basic views

• API Call view

• Compute kernel summary view

• Compute kernel detail view

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 28

Profiler: API Call View

% Total Time % Total Calls Compute I/O VM API Name Caller Name File Line

Cumulative Time Time Time Time

29.48 29.48 100 0.075 0 0.032 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 142

58.94 29.45 100 0.075 0 0.032 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 143

85.27 26.33 10 0.037 0 0.059 SP::sum GPU_PS_Compute_Pi main.cpp 146

90.75 5.48 10 0.014 0 0.0059 SP::operator<= GPU_PS_Compute_Pi main.cpp 145

95.54 4.79 10 0.012 0 0.0052 SP::sqrt GPU_PS_Compute_Pi main.cpp 144

96.35 0.81 10 0 0.0029 0 SP::RNGf32::RNGf32 GPU_PS_Compute_Pi main.cpp 140

97.06 0.71 10 0.00013 0 0.0025 SP::operator/ GPU_PS_Compute_Pi main.cpp 146

97.75 0.68 10 0.0017 0 0.00074 SP::cond GPU_PS_Compute_Pi main.cpp 145

98.43 0.68 10 0.0017 0 0.00074 SP::operator+ GPU_PS_Compute_Pi main.cpp 144

99.12 0.68 10 0.0017 0 0.00074 SP::operator* GPU_PS_Compute_Pi main.cpp 144

99.80 0.68 10 0.0017 0 0.00074 SP::operator* GPU_PS_Compute_Pi main.cpp 144

99.94 0.14 10 2.7e-05 0 0.00049 SP::operator* GPU_PS_Compute_Pi main.cpp 146

100.00 0.06 10 0 0.0002 0 SP::Arrayf32::read_scalar GPU_PS_Compute_Pi main.cpp 148

» Role: report on how the application spent its time
• in terms of PeakStream API calls

» Conclusions for this simple example:
• This application is not I/O limited

• Most of the run time is spent in the RNG & reduction

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 29

Profiler: Compute Kernel Summary View

% Total Executions Compute Paging JIT Kernel File Line

Time Time Time Time Name

71.92 10 0.18 0 0.078 GPU_PS_Compute_Pi:1 main.cpp 142

26.33 60 0.037 0 0.059 GPU_PS_Compute_Pi:2 main.cpp 146

0.85 10 0.00016 0 0.0029 GPU_PS_Compute_Pi:3 main.cpp 146

» Role: report on which compute kernels matter most

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 30

Profiler: Compute Kernel Detail View

% Total Executions Compute Paging JIT Kernel File Line

Time Time Time Time Name

71.92 10 0.18 0 0.078 GPU_PS_Compute_Pi:1 main.cpp 142

Details:

Compute JIT API Name Caller File Line

Time Time

0: 0.072 0.03 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 142

1: 0.0017 0.00074 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 142

2: 0.0017 0.00074 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 142

3: 0.0017 0.00074 SP::operator* GPU_PS_Compute_Pi main.cpp 144

4: 0.072 0.03 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 143

5: 0.0017 0.00074 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 143

6: 0.0017 0.00074 SP::rng_uniform_make GPU_PS_Compute_Pi main.cpp 143

7: 0.0017 0.00074 SP::operator* GPU_PS_Compute_Pi main.cpp 144

8: 0.0017 0.00074 SP::operator+ GPU_PS_Compute_Pi main.cpp 144

9: 0.012 0.0052 SP::sqrt GPU_PS_Compute_Pi main.cpp 144

10: 0.014 0.0059 SP::operator<= GPU_PS_Compute_Pi main.cpp 145

11: 0.0017 0.00074 SP::cond GPU_PS_Compute_Pi main.cpp 145

» Role: report about what’s inside a compute kernel

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 31

PeakStream Tools Extensions: Windows Debugger

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 32

PeakStream Tools Extensions: Windows Visualizer

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 33

PeakStream Tools Extensions: Windows Profiler

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 34

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Grid Size

S
a
m

p
le

s
/S

e
c
 (

M
M

)

PeakStream

Traditional CPU

Lab Application Benchmarks

Oil & Gas: Kirchhoff Migration Finance: Monte Carlo Simulation

0

100

200

300

400

500

600

700

800

10,000 100,000 1,000,000

Number of randoms Generated (Log(10) scale)

R
a

n
d

o
m

 N
u

m
b

e
rs

 P
e

r
S

e
c

o
n

d
 (

M
)

GPU

CPU

PeakStream on GPU

8x Peak Performance Advantage 16x Peak Performance Advantage

PeakStream on GPU

Traditional serial
Code on CPU

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 35

Application: Kirchhoff Migration

void

KirchhoffMigration(int NT, int N, float *datagpu, float *modlgpu)

{

int NTN = NT * N;

float dx = LX / float(N);

float dt = LT / float(NT);

float factor = 1./ (velhalf * velhalf);

float idt = 1./ dt;

Arrayf32 modl = zeros_f32(NT,N);

{

Arrayf32 x = dx * index_f32(1, NT, N);

Arrayf32 z = dt * index_f32(0, NT, N);

Arrayf32 data = Arrayf32::make2(NT, N, datagpu);

for(int iy=0; iy < N; iy++) {

float y = float(iy)*dx;

Arrayf32 index1 = float(iy) * ones_f32(NT, N);

Arrayf32 it = 0.5 + sqrt(z * z + (x-y)* (x-y) * factor) * idt;

modl += gather2_floor(data, it, index1);

}

}

modl.read1(modlgpu, NTN * sizeof(float));

return;

}

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 36

Application: Monte Carlo Finance

float MonteCarloAntithetic(float price, float strike, float vol,

float rate, float div, float T)

{

float deltat = T/N;

float muDeltat = (rate-div-0.5*vol*vol)*deltat;

float volSqrtDeltat = vol*sqrt(deltat);

float meanCPU = 0.0f;

Arrayf32 meanSP; // result

{ // a new scope to hold temporary arrays

RNGf32 rng_hndl(SP_RNG_CEICG12M6, 0);

Arrayf32 U = zeros_f32(M);

for(int i=0; i<N; i ++) {

U += rng_normal_make(rng_hndl, M);

}

Arrayf32 values;

{

Arrayf32 lnS1 = log(price) + N * muDeltat + volSqrtDeltat*U;

Arrayf32 lnS2 = log(price) + N * muDeltat + volSqrtDeltat*(-U);

Arrayf32 S1 = exp(lnS1);

Arrayf32 S2 = exp(lnS2);

values = (0.5 * (max(0,S1-strike) + max(0, S2-strike)) * exp(-rate*T));

}

meanSP = mean(values);

} // all temporaries released as we exit scope

meanCPU = meanSP.read_scalar();

return meanCPU ;

}

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 37

The Future of Processors

» Where are Processors going?

» Integrated CPU + GPU

• AMD’s Fusion

• Intel’s Larrabee

» GPUs and Cell Processor are not so different

• They will converge

• And become integrated with a few CPU cores

• What differentiates them from CPUs?
Explicit communication models

» The Future Processor

• A control processor (a.k.a. CPU)

• A compute array (GPU, Cell, etc.)

» This is an excellent processor for both gaming and HPC

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 38

Where is Software for Many-Core Processors Going?

» New programming models

• Data-parallel is one approach, and there are others

• But the manually threaded approach leaves a lot to be desired

• How do we expose new models? APIs & languages

» Increasing importance of runtime systems

• Managing the processors: Scheduling

• Managing the data: Memory Management

• Managing the code: JITing

» Reliance on compilers

• To create optimal compute kernels for rapidly evolving processors

• In a way that protects the investment in application codes

Copyright © 2007 PeakStream, Inc. All Rights Reserved. Page 39

Conclusion

» The world needs good programming environments to make
parallel programming easier

• This is an exciting area of continued research

• The need will persist for a long time

» PeakStream was one such solution

• A data-parallel model for programming many-core

• What other solutions can you think of?

» Thank you very much

