Scalable Parallel Programming with CUDA on Manycore GPUs

John Nickolls
Stanford EE 380 Computer Systems Colloquium, Feb. 27, 2008
Outline

- Transition to scalable parallel computing
- CUDA applications
- CUDA programming model
- SAXPY example
- Sparse matrix vector product
- Parallel sum reduction
- N-body physics
- Tesla GPU Architecture
- Summary
The Transition to Parallel Computing

- Is well along … in unified graphics and computing processors

- The GPU is a scalable parallel computing platform
 - Thousands of parallel threads
 - Scales to hundreds of parallel processor cores
 - Ubiquitous – in laptops, desktops, workstations, servers

- CUDA parallel programming model introduced in 2007
 - Write C code for one thread
 - Instantiate parallel thread blocks
 - Tens of thousands of CUDA developers

- NVIDIA ships 1M CUDA-capable GPUs a week
 - Over 50 M CUDA-capable GPUs shipped

- Unique opportunity to innovate and develop widely-deployed parallel applications
Tesla GPU architecture

- Unifies graphics and computing
- Scalable parallel computing platform
- In laptops, desktops, workstations, servers

- 8-series GPUs deliver 50 to 200 GFLOPS on compiled parallel C applications
- GPU parallel performance pulled by the insatiable demands of PC game market

- GPU parallelism doubling every 12-18 months
- Programming model scales transparently

- Programmable in C with CUDA tools
- Multithreaded model uses data parallelism, task parallelism, and thread parallelism
Tesla GPU Computing Architecture

- Scalable processing and memory, massively multithreaded
- GeForce 8800: 128 processor cores at 1.5 GHz, 12K threads
GPU Computing Application Areas

- Computational Geoscience
- Computational Chemistry
- Computational Medicine
- Computational Modeling
- Computational Engineering
- Computational Biology
- Computational Finance
- Image Processing
Dynamic Real-Time MRI

Bioengineering Institute, University of Auckland, IUPS Physiome Project

Zhi-Pei Liang's Research Group, Beckman Institute, UIUC
Used with permission of Justin Haldar

G80 GPU is 245x CPU
Acceleware

GPU Electromagnetic Field simulation

- 3D Finite-Difference and Finite-Element (FDTD)
- Cell phone irradiation
- MRI Design / Modeling
- Printed Circuit Boards
- Radar Cross Section (Military)

Performance

<table>
<thead>
<tr>
<th>Performance</th>
<th>1X</th>
<th>11X</th>
<th>22X</th>
<th>45X</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 3.2 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 2 Duo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 GPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 GPUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 GPUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell phone EM Field

Pacemaker with Transmit Antenna
Manifold 8 GIS Application

From the Manifold 8 feature list:

… applications fitting CUDA capabilities that might have taken tens of seconds or even minutes can be accomplished in hundredths of seconds. … CUDA will clearly emerge to be the future of almost all GIS computing.

From the user manual:

"NVIDIA CUDA … could well be the most revolutionary thing to happen in computing since the invention of the microprocessor."
Evolved Machines

- 130X Speed up
- Simulate networks of brain neurons
- Solve differential equations of ion channels
- Sensory computing: vision, olfactory
Matlab: Language of Science

17X with MATLAB CPU+GPU

Pseudo-spectral simulation of 2D Isotropic turbulence

http://www.amath.washington.edu/courses/571-winter-2006/matlab/F52D_turb.m
Hanweck Associates

- VOLERA, real-time options implied volatility engine
- Accuracy results with single precision
- Evaluate all U.S. listed equity options in <1 second

(www.hanweckassoc.com)
VMD/NAMD Molecular Dynamics

100X VMD speedup
240x ion placement

Parallel GPUs with Multithreading:
705 GFLOPS /w 3 GPUs

- One host thread is created for each CUDA GPU
- Threads are spawned and attach to their GPU based on their host thread ID
 - First CUDA call binds that thread’s CUDA context to that GPU for life
 - Handling error conditions within child threads is dependent on the thread library and, makes dealing with any CUDA errors somewhat tricky, left as an exercise to the reader. ©
- Map slices are computed cyclically by the GPUs
- Want to avoid false sharing on the host memory system
 - map slices are usually much bigger than the host memory page size, so this is usually not a problem for this application
- Performance of 3 GPUs is stunning!
- Power: 3 GPU test box consumes 700 watts running flat out

NAMD, recipient of a 2002 Gordon Bell Award, is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. Based on Charm++ parallel objects, NAMD scales to hundreds of processor on high-end parallel platforms and thousands of processors on commodity clusters using grid ethernet. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR. NAMD is distributed free of charge with source code. You can build NAMD yourself or download libraries for a wide variety of platforms. Our tutorials show you how to use NAMD and VMD for biomolecular modeling.

Supercomputer Simulations May Point to Cause of Parkinson's, Alzheimer's Diseases (EDSGC article referring to NAMD simulations on Blue Gene, reported in TechNews et al., PEBJ Journal, 274:1952-1977, 2007)

Single search: [Search NAMD web site and tutorials] [Google]
NAMD acceleration on GPU cluster

- **GPU cluster:**
 - 1 HP DL320S (master)
 - 8 HP DL140 (compute nodes) with 3.0Ghz Woodcrest CPU
 - 8 Tesla D870
nbody Astrophysics

Astrophysics research
1 GF on standard PC
300+ GF on GeForce 8800GTX
Faster than GRAPE-6Af custom simulation computer

http://progrape.jp/cs/
CUDA Stable Fluids Demo

CUDA port of:
CUDA Programming Model

Examples courtesy of Michael Garland, Mark Harris, and Massimiliano Fatica / NVIDIA
CUDA Programming Model

- Minimal extension of C and C++ languages
- Write a serial program that calls parallel kernels

Serial portions execute on the host CPU
- A **kernel** executes as parallel threads on the GPU device
 - Kernels may be simple functions or full programs
 - Many threads execute each kernel

Differences between CUDA and CPU threads
- CUDA threads are extremely lightweight
 - Tiny thread creation overhead
 - Zero-overhead thread scheduling
- CUDA uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few
 - CUDA uses threads for fine-grained parallelism
 - CUDA uses blocks of threads for coarse-grained parallelism
CUDA Grids of Thread Blocks

- Organize kernel threads into grids of thread blocks

- A thread block is an array of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution

- Thread blocks of a grid execute independently
CUDA Hierarchy of thread groups

- **Thread**
 - Computes result elements
 - `threadIdx` is thread id number

- **Thread Block**
 - Computes result data Block
 - 1 to 512 threads per Thread Block
 - `blockIdx` is block id number

- **Grid of Blocks**
 - Computes many result blocks
 - 1 to many blocks per grid

- **Sequential Grids**
 - Compute sequential problem steps

- **Thread**
 - Computes result elements

- **Thread Block**
 - Computes result data Block
 - 1 to 512 threads per Thread Block
 - `blockIdx` is block id number

- **Grid of Blocks**
 - Computes many result blocks
 - 1 to many blocks per grid

- **Sequential Grids**
 - Compute sequential problem steps
CUDA Thread ID and Block ID

- Threads and blocks have IDs
 - Each thread selects what data to work on
 - Using built-in variables

- 1D, 2D, 3D blocks and grids

- Block and thread IDs
 - Built-in variables:
 - blockIdx .x, .y
 - threadIdx .x, .y, .z

- Grid and block dimensions
 - Built-in variables:
 - blockDim .x, .y, .z
Launching parallel CUDA kernels

- Declare kernel entry procedure as `__global__`
- Extended function call syntax:

  ```
  kernel<<<dimGrid, dimBlock>>>(... parameter list ...);
  kernel<<<32, 256>>>(... parameter list ...);
  ```

- Specify dimensions of grid in blocks

 - Grid dimensions: x, y

    ```
    dim3 dimGrid(16, 16);
    ```

- Specify dimensions of the blocks in threads

 - Unspecified dim3 dimensions are 1

    ```
    dim3 dimBlock(16, 16);
    ```

- Kernel function parameters in (...)

SAXPY: y=ax+y in C, parallel CUDA

```c
void saxpy_serial(int n, float a, float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__
void saxpy_parallel(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n)  y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nbblocks = (n + 255) / 256;
saxpy_parallel<<<nbblocks, 256>>>(n, 2.0, x, y);
```
CUDA 2D Example: Add Arrays

C program

```c
void addMatrix(
    float *a, float *b, float *c, int N
) {
    int i, j, idx;
    for (i = 0; i < N; i++) {
        for (j = 0; j < N; j++) {
            idx = i + j*N;
            c[idx] = a[idx] + b[idx];
        }
    }
}

void main()
{
    // ...
    addMatrix(a, b, c, N);
}
```

CUDA C program

```c
__global__ void addMatrixG(
    float *a, float *b, float *c, int N
) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    int j = blockIdx.y*blockDim.y + threadIdx.y;
    int idx = i + j*N;
    if (i < N && j < N)
        c[idx] = a[idx] + b[idx];
}

void main()
{
    dim3 dimBlock (blocksize, blocksize);
    dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
    addMatrixG<<<dimGrid, dimBlock>>>(a, b, c, N);
}
```
CUDA Parallel Memory Sharing

- **Local Memory:** per-thread
 - Private per thread
 - Auto variables, register spill
- **Shared Memory:** per-block
 - Shared by threads of block
 - Inter-thread communication
 - Barrier synchronization
- **Global Memory:** per-application
 - Shared by all threads
 - Inter-Grid communication
 - Inter-Kernel synchronization

Thread
- **Per-Thread Local Memory**

Thread Block
- **Per-Block Shared Memory**

Grids
- **Grid 0**
- **Grid 1**

Global Memory
- Sequential Grids in Time

© NVIDIA Corporation 2008
CUDA Kernel Variable Qualifiers

__device__
- stored in global device memory (large, high latency)
- global memory accessible by all threads
- lifetime: application

__shared__
- stored in per-block shared memory (small, low latency)
- accessible by all threads in the same thread block
- lifetime: kernel thread block

Unqualified variables:
- scalars and built-in vector types are in registers
- arrays are stored in per-thread device memory
CUDA Synchronization

- Barrier synchronization among threads of block
 - Fast single-instruction barrier in Tesla GPUs
 - `void __syncthreads();`
 - Synchronizes all threads in a thread block
 - Once all threads have reached this point, kernel execution resumes normally
 - Use before reading shared memory written by another thread in the same block

- Global synchronization between dependent kernels
 - Waits for all thread blocks of kernel grid to complete
 - Fast synchronization and kernel launch in Tesla GPUs
CUDA Atomic Integer Operations

Atomic operations on integers in global memory:
- `atomicAdd(int *pmem; int value)`
- Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
- Requires Tesla 1.1 architecture or later GPU
- Eliminates last stage of a parallel reduction
- Useful for atomic data structure management
CUDA Memory Management

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute a kernel
kernel<<< N/blockSize, blockSize >>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
SpMV: Sparse Matrix-Vector Product

- **SpMV:** $y = Ax$ for sparse $n \times n$ matrix A
- Sparse $n \times n$ matrix A stores only m non-zero entries
- Compressed Sparse Row (CSR) representation
- Array $Av[m]$ stores non-zero values of A
- Array $Aj[m]$ stores column index for corresponding $Av[]$
- Array $Ap[n+1]$ stores extent of prior row
- Row i extends from $Ap[i]$ up to but not including $Ap[i+1]$
- $Ap[0] = 0$, $Ap[n] = m$

Sample Matrix A

$$A = \begin{bmatrix}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 4 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}$$

CSR Representation of Matrix

- **Row 0**
 - $Av[7] = \{3, 1\}$
 - $Aj[7] = \{0, 2\}$
 - $Ap[5] = \{0, 2\}$
- **Row 2**
 - $Av[7] = \{2, 4, 1\}$
 - $Aj[7] = \{1, 2, 3\}$
- **Row 3**
 - $Av[7] = \{1, 1\}$
 - $Aj[7] = \{0, 3\}$
 - $Ap[5] = \{0, 3\}$

(a) Sample matrix A
(b) CSR representation of matrix
SpMV: One row of \(y = Ax \)

- Given sparse matrix \(A \) in CSR form \(Av[] \), \(Aj[] \)
- Compute one row of \(y = Ax \)
- Identical C and CUDA code below

```c
float mult_row(unsigned rowsize,
               unsigned *Aj,    // column indices for row
               float *Av,      // non-zero entries for row
               float *x)       // the RHS vector
{
    float sum = 0;
    for (unsigned column=0; column<rowsize; ++column)
        sum += Av[column] * x[Aj[column]];
    return sum;
}
```
Serial code loops over all rows, calls `mult_row();`

```c
void csrMul_serial(unsigned *Ap, unsigned *Aj, float *Av, unsigned nrows, float *x, float *y)
{
    for (unsigned row=0; row < nrows; ++row) {
        unsigned row_begin = Ap[row];
        unsigned row_end = Ap[row+1];
        y[row] = mult_row(row_end-row_begin, Aj+row_begin, Av+row_begin, x);
    }
}
```
CUDA parallel kernel code for one thread
Each thread computes one row of vector y

```c
__global__
void csrmul_kernel(unsigned *Ap, unsigned *Aj,
                     float *Av, unsigned nrows, float *x, float *y) {

  unsigned row = blockIdx.x*blockDim.x + threadIdx.x;
  if (row < nrows) {
    unsigned row_begin = Ap[row];
    unsigned row_end = Ap[row+1];
    y[row] = mult_row(row_end-row_begin,
                      Aj+row_begin, Av+row_begin, x);
  }
}
```
SpMV: CUDA mainline

- Copy sparse matrix data A and x to device memory
 - cudaMemcpy()

- Invoke parallel kernel on grid of thread blocks
 - csrmul_kernel<<<dimg, dimb>>>(parameters);

- Copy result data y from device memory
 - cudaMemcpy()

```plaintext
unsigned blocksize = 128; // or any size up to 512
unsigned nbblocks = (nrows + blocksize - 1)/blocksize;

csrmul_kernel<<<nbblocks,blocksize>>>(Ap, Aj, Av, nrows, x, y);
```
Parallel Sum Reduction

- **Reduction** is a common data parallel operation
 - Reduce vector to a scalar value
 - Operator: +, *, min, max, AND, OR
 - $O(\log_2 N)$ tree-based implementation

- **Two stages of computation:**
 - Sum within each block
 - Sum partial results from the blocks
 - Final stage repeats kernel, or uses atomicAdd()
Reduction Kernel execution

Values (shared memory)

Step 1
Distance 8

Step 2
Distance 4

Step 3
Distance 2

Step 4
Distance 1

Threads

Values

Step 1
Distance 8

Step 2
Distance 4

Step 3
Distance 2

Step 4
Distance 1

Values
CUDA Sum Reduction Kernel

```c
__global__
reduce(int *g_idata,
       int *g_odata)
{
    extern __shared__
    int data[];

    int t = threadIdx.x;
    int b = blockIdx.x;
    int bd = blockDim.x;
    int i = b * bd + t;

    // load shared mem
    data[t] = g_idata[i];
    __syncthreads();

    // reduce in shared mem
    for (int s = bd/2; s>0; s >>= 1)
    {
        if (t < s)
            data[t] += data[t + s];
        __syncthreads();
    }

    // global mem += block sum
    if (t == 0)
        atomicAdd(g_odata, data[0]);
}
```

CUDA Reduction Kernel

```c
__global__ void sum_kernel(int *g_input, int *g_output)
{
    extern __shared__ int s_data[]; // allocated at kernel launch

    // read input into shared memory
    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
    s_data[threadIdx.x] = g_input[idx];
    __syncthreads();

    // compute sum for the thread block
    for (int dist = blockDim.x/2; dist > 0; dist /= 2)
    {
        if (threadIdx.x < dist)
            s_data[threadIdx.x] += s_data[threadIdx.x + dist];
        __syncthreads();
    }

    // write the block's sum to global memory
    if (threadIdx.x==0)
        g_output[blockIdx.x] = s_data[0];
}
```
Reduction Host Source Code (1)

```c
int main()
{
    // data set size in elements and bytes
    unsigned int n = 4096;
    unsigned int nbytes = n*sizeof(int);

    // launch configuration parameters
    unsigned int block_dim = 256;
    unsigned int nbblocks = n / block_dim;
    unsigned int smem_bytes = block_dim*sizeof(int);

    // allocate and initialize the data on the CPU
    int *h_a=(int*)malloc(nbytes);
    for (int i=0; i < n; i++)
        h_a[i]=1;

    // allocate memory on the GPU device
    int *d_a=0, *d_out=0;
    cudaMemcpy((void**)&d_a, nbytes);
    cudaMemcpy((void**)&d_out, nbblocks*sizeof(int));
}
```
Reduction Host Source Code (2)

...

// copy the input data from CPU to the GPU device
cudaMemcpy(d_a, h_a, nbytes, cudaMemcpyHostToDevice);

// two stages of kernel execution
sum_kernel<<<nblocks, block_dim, smem_bytes>>>(d_a, d_out);
sum_kernel<<<1, nblocks, nblocks*sizeof(int)>>>(d_out, d_out);

// copy the output from GPU device to CPU and print
cudaMemcpy(h_a, d_out, sizeof(int), cudaMemcpyDeviceToHost);
printf("%d\n", h_a[0]);

// release resources
cudaFree(d_a);
cudaFree(d_out);
free(h_a);

return 0;
}
N-Body Simulation

Courtesy of Mark Harris

- Numerically simulate evolution of system of N bodies
 - Each body continuously interacts with all other bodies

- Examples:
 - Astronomical and astrophysical simulation
 - Molecular dynamics simulation
 - Fluid dynamics simulation
 - Radiometric transfer (Radiosity, multiple scattering, etc.)

- N^2 interactions to compute per time step
 - For the brute force *all-pairs* approach we discuss here
CUDA N-Body Simulation

10B interactions / s

16K bodies
44 FPS
x 20 FLOPS / interaction
x 16K² interactions / frame
= 240 GFLOP/s

= 50x tuned CPU implementation on Intel Core 2 Duo

GeForce 8800 GTX GPU

Highly Parallel
High Arithmetic Intensity
Papers about N-Body on CUDA

“Fast N-Body Simulation with CUDA”
 Nyland, L., Harris, M., and Prins, J.
 GPU Gems 3

"Accelerating Molecular Modeling Applications with Graphics Processors"
 John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,
 Leonardo G. Trabuco, Klaus Schulten
 J. Comp. Chem. (Submitted)

“The Chamomile Scheme: An Optimized Algorithm for N-body simulations on Programmable Graphics Processing Units”
 Hamada, T. and T. Iitaka.
 Submitted to NewAstronomy, 5 Mar, 2007

“High Performance Direct Gravitational N-body Simulations on Graphics Processing Units – II: An implementation in CUDA”
 Belleman, R. G., J. Bedorf, S. Portegies Zwart.
 Accepted for publication in NewAstronomy

“Graphic-Card Cluster for Astrophysics (GraCCA) -- Performance Tests”
 Submitted to NewAstronomy, 20 July, 2007
 Cluster of 32 GeForce 8800 GTX GPUs: 7.1 TFLOP/s measured!
Sequential N-Body Algorithm

```plaintext
foreach body i {
    accel = 0;
    pos_i = position[i]
    foreach body j {
        pos_j = position[j]
        accel +=
            computeAcceleration(pos_i, pos_j)
    }
    // Leapfrog-Verlet integration*
    velocity[i] += accel * timestep
    position[i] += velocity[i] * timestep
}

*Any integration scheme can be used
```
Sequential N-Body Algorithm

Conceptual grid of interactions between \((i, j)\) pairs

Interaction between Bodies \(i\) and \(j\)
Approach to N-Body Parallelism

- This is very parallel: one thread per body
- Acceleration on all bodies can be computed in parallel
- Blocks of p threads process p bodies at a time

```c
forall bodies $i$ in parallel {
    accel = 0;
    pos_i = position[i]
    foreach body $j$ {
        pos_j = position[j]
        accel +=
            computeAcceleration(pos_i, pos_j)
    }
}
```
Inefficient Parallel Approach

forall bodies i in parallel
{
 accel = 0
 pos_i = position[i]
 foreach body j
 {
 pos_j = position[j]
 accel += computeAccel(pos_i,pos_j);
 }
}

- Every thread loads all body positions from off-chip memory
- N^2 loads: Bandwidth bound
- 86 GB/s peak / 16 bytes per position = 5.4B interactions/s theoretical peak
- 108 GFLOP/s < ½ what G80 achieves on efficient n-body code
Inefficient Parallel Implementation

- N threads
- \(N \times N\) computations
- \(N \times N\) loads

Body \(i\) = Thread \(i\)

Body \(j\)

Outer Loop \((i)\) Parallel

Inner Loop \((j)\) Sequential

Interactions between body \(i\) and all bodies \(j\) computed by thread \(i\)
Inefficient CUDA Implementation

Body j

N/p Thread Blocks of p threads each

Outer Loop (i) Parallel

Inner Loop (j) Sequential
Use fast on-chip per-block shared memory
- Share blocks of body positions between threads
- Break grid into conceptual tiles

Body $i = \text{Thread } i$

Outer Loop (i) Parallel

Inner Loop (j) Sequential

Body j
CUDA Tiled Parallel Approach

forall bodies i in parallel {
 accel = 0;
 pos_i = position[i]

 foreach tile q
 foreach threads p in thread block in parallel {
 shared[p] = position[q*tile_size + p]
 }
synchronize threads in block

 foreach body j in tile q
 pos_j = shared[j]
 accel +=
 computeAcceleration(pos_i, pos_j)
 }
synchronize threads in block
}
CUDA Tiled Parallel Approach

- Sequential inner loop split into N/p sub-loops over tiles
 - Threads in a block cooperatively load p positions within a tile to shared memory

- Reduces # of loads to N^2 / p
 - Typically use $p = 256$ threads, so big savings!
 - Compute bound, good performance
 - 10B interactions / s = 205+ GFLOP/s
CUDA Tiled Parallel Implementation

Body j

N/p Thread Blocks of p threads each

Outer Loop (i) Parallel

Each thread loads one body position into shared memory (p per block)
CUDA Tiled Parallel Implementation

Outer Loop (i) Parallel

Inner Loop (j) Sequential

N / p Thread Blocks of p threads each

Body j
N-Body Physics on CUDA

- All-pairs gravitational N-body physics of 16,384 stars
- 240 GFLOPS on NVIDIA GeForce 8800 – see GPU Gems 3
CUDA Software Development Kit

CUDA Optimized Libraries: FFT, BLAS, …

Integrated CPU + GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly for Computing

CPU Host Code

CUDA Driver

Standard C Compiler

GPU

Profiler

CPU
CUBLAS Library

- Self-contained BLAS library
 - Application needs no direct interaction with CUDA driver
- Currently a subset of BLAS core functions
 - Single/Real Routines, BLAS1 Complex, CGEMM
- Simple to use:
 - Create matrix and vector objects in GPU memory
 - Fill them with data
 - Call sequence of CUBLAS functions
 - Upload results back from GPU to host
- Column-major storage and 1-based indexing
 - For maximum compatibility with existing Fortran apps
CUFFT Library

Efficient FFT on CUDA

Features

- 1D, 2D, and 3D FFTs of complex and real-valued signal data
- Batch execution for multiple 1D transforms in parallel
- Transform sizes (for 1D) in the range [2, 16M]
- Transform sizes (for 2D and 3D) in the range [2, 16384]
Tesla Unifies Graphics & Computing

- Tesla unified computing and graphics architecture
- Tesla C870: 128 Thread Processor cores at 1.35 GHz
SM Multithreaded Multiprocessor

- SM has 8 SP Thread Processors
 - 32 GFLOPS peak at 1.35 GHz
 - IEEE 754 32-bit floating point
 - 32-bit and 64-bit integer
 - 8K 32-bit registers
- SM has 2 SFU Special Function Units
- Scalar ISA
 - Memory load/store, texture fetch
 - Branch, call, return
 - Barrier synchronization instruction
- Multithreaded Instruction Unit
 - 768 Threads, hardware multithreaded
 - 24 SIMT warps of 32 threads
 - Independent thread execution
 - Hardware thread scheduling
- 16KB Shared Memory
 - Concurrent threads share data
 - Low latency load/store
Weaving: first parallel thread technology
Warp: the set of 32 parallel threads that execute a SIMT instruction
SIMT: Single-Instruction Multi-Thread

SM hardware implements zero-overhead warp and thread scheduling
Each SM executes up to 768 concurrent threads, as 24 SIMT warps of 32 threads

Threads can execute independently
SIMT warp diverges and converges when threads branch independently
Best efficiency and performance when threads of a warp execute together
SIMT across threads (not just SIMD data) provides easy single-thread scalar programming with SIMD efficiency
Thread Processor Datapath

- Executes 32-bit IEEE floating point instructions:
 - FADD, FMUL, FMAD, FMIN, FMAX, FSET, F2I, I2F
- Performs 32-bit integer instructions:
 - IADD, IMUL24, IMAD24, IMIN, IMAX, ISET, I2I
 - SHR, SHL, AND, OR, XOR
- Fully pipelined
 - Latency and area optimized
- IEEE 754 compliant FADD, FMUL
 - Round to nearest even, round toward zero
 - Handles special numbers, NaNs, infinities properly
 - Flushes denormal operands and results to zero
Special Function Unit (SFU)

- Executes transcendental function instructions
 - RCP, RSQRT, EXP2, LOG2, SIN, COS
 - 2 SFUs per SM yields ¼ instruction throughput
- Evaluates function approximations
 - Quadratic interpolation with Enhanced Minimax Approximation
 - Interpolates pixel attributes
- Accuracy ranges from 22.5 to 24.0 bits
 - 1/x in the interval [1,2) is 24 bits, 1 ulp
Tesla C870 GPU Implementation

- 681 million transistors
- 470 mm² in 90 nm CMOS
- 128 thread processors
- 518 GFLOPS peak
- 1.35 GHz processor clock
- 1.5 GB DRAM
- 76 GB/s peak
- 800 MHz GDDR3 clock
- 384 pin DRAM interface
- ATX form factor card
- PCI Express x16
- 170 W max with DRAM
Summary

Transition to scalable parallel programming is being led by unified graphics and computing GPUs

CUDA scalable programming model
- Provides readily understood abstractions
- Hierarchy of thread groups, shared memory, synchronization
- Fine grained and coarse-grained parallelism
- Productive environment for developing parallel software
- Great for teaching scalable parallel programming
- Maps to GPUs today, later to other parallel architectures

CUDA and ubiquitous parallel GPUs are democratizing parallel programming

//www.nvidia.com/CUDA