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Outline

� CMOS Process variations

� Current status

� Future projections

� A new Hypothesis on Critical Operation Point

� A Thought Experiment giving rise to the hypothesis

� Two Real Experiments in support of the hypothesis

� Potential exploits of the new hypothesis

� Power savings in large data-centers
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Process Variations

� Sources of Variations

� Gate Oxide thickness (TOX)

� Random Doping Fluctuations (RDF)

� Device geometry, Lithography in nanometer region

� Transistor Threshold Voltage (VT)

�Sub threshold current, leakage, power, frequency

� Range of Variations

� 100% VT variation across a modern chip

� 30% speed variation across a wafer

� 100% leakage (static power) variation in a wafer
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Static Variations today
(source: Shekhar Borkar, Intel)
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FMAX statistical analysis

Source: Bowman, K.A.; Duvall, S.G.; Meindl, 
J.D., "Impact of die-to-die and within-die 

parameter fluctuations on the maximum clock 

frequency distribution for gigascale
integration," Solid-State Circuits, IEEE Journal 

of , vol.37, no.2, pp.183-190, Feb 2002
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Process Variations and Slack Time
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clock

Slack Time Reduction

Process Variations ↑↑↑↑
Clock Frequency ↑↑↑↑
Supply Voltage  ↓  ↓  ↓  ↓
Ambient Temperature ↑↑↑↑
Gate and Pin Switching rate ↑↑↑↑
Years of Aging ↑↑↑↑
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Errors and Process Variations

Reducing Process guard band �
(e.g. reducing slack time)

�

Errors
Per

Day/month

1

2

Parameters:

Clock Frequency ↑
Supply Voltage  ↓
Ambient Temperature ↑
Gate and Pin Switching rate ↑
Years of Aging ↑
Process Variations ↑

Errors:
All are timing errors
No spontaneous bit flips
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Protecting against process variations

� If the error rate from added delays remains 
relatively small, we can utilize some of the 
established techniques

� iROC, Razor, Biser etc.

� Error coding – Parity codes, Arithmetic codes, 

Residue codes, Parity prediction, Algorithm-based 
fault-tolerance, TMR etc.

� Time redundancy like RESO

� What if the error rate is massive?

� Are massive errors possible in a good chip?



9

� Consider a 1-Ghz chip with a million flip-flops

� Let us divide the 1ns Clock period in to 1000 bins

� Put a FF in bin p if the longest path at its input has a delay 
of p picoseconds

� How many FFs are in bins 900ps to 950ps?
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A Thought Experiment

� Let us conservatively assume 100,000 ffs are on critical 
paths (10% of total)

� Consider any of the following factors that reduce the slack 
time of these ffs.

� Increase clock frequency (reduce cycle time)

� Decrease supply voltage (increases gate delays)

� Add years of aging (gates get slower with age)

� Increase process variations (larger sigma)

� Assume just 10% of critical ffs get its inputs late this cycle

� This implies 10,000 flip-flops produce errors in a single clock 
cycle!

� Massive number of errors result in a few clock cycles
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Do your own Thought Experiment!

� Total Number of Flip-Flops: 400,000

� Only 5% of these are on critical paths: 20,000 FFs

� Only 1% of these receive critical signals: 200 FFs

� In 10 consecutive clock cycles: 2000 errors!

� Do your own Thought Experiment

� Estimate number of FFs on critical paths from timing analysis 
or synthesis report. Guesstimate, % of active signals. 

� How many errors in 10, 100 or 1000 consecutive clock 
cycles?

� Is there any scenario that doesn’t lead to a catastrophic 
failure in an extremely short time?
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A new hypothesis
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Hypothesis of Critical Operation Point

� In large CMOS circuits there exists a Critical 
Operating Frequency FC and Critical Voltage VC for a 
fixed ambient temperature T, such that

� Any frequency above FC causes massive errors

� Any voltage below VC causes massive errors

� Any frequency below FC or voltage above VC , no 

process related errors occur

� In practice, FC and VC are not single points, but 
are confined to an extremely narrow range for a 
given ambient temperature TC
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FC and VC
: Points or a Range?

� During a systematic search 
for the critical point, one 
will find a point when the 
system crashes

� Critical point varies in a 
very narrow range from 
one experimental search to 
another, most likely due to 
temperature variations

� Practically it is impossible 
to control the junction 
temperature of each 
transistor to a precise 
number TC 
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Experiments to disprove the hypothesis

� Subject a large chip to slowly increasing 
frequency or slowly decreasing supply voltage

� At each step, exercise the chip extensively and 
monitor continuously for any errors

� Two microprocessors were set up for detecting 
errors in the presence of reduced supply voltage

� PowerPC 750, 2.5V, 233MHz

�C-program to exercise and monitor for errors

� Pentium-M, 1.308V, 2GHz

�Third-party program to keep the cpu 100% busy and 
report errors (more like a power virus!)
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Experiment to find which of these two?
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Experimental Set-UP

� A Single-Board-Computer with PowerPC 750

� 233MHz, 2.5V Power Supply

� A Hewlett-Packard E3631A Power Supply

�Digital control in units of 10 miliVolts steps

� A Blow-Drier to raise the ambient temperature

� A Program written to stress all major functional 
blocks

� Tried to maximize execution rate (load)

� Tried to maximize logic switching rate

� Every operation was checked against known good 
values and instantly reported for any error
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“Stressing” PowerPC 750 (233 MHz)

Routine 
Operations 

per loop 

Number 

of loops 

Total 

Operations 

Approx. 

Running 

Time 

Approx. 

Operations 

Per 

Second 

Register Unit 40 8,000,000 320,000,000 6.34 s 50.47x10
6
 

Instruction Fetch Unit 32 8,000,000 256,000,000 92.04 s 2.78x10
6
 

Integer Addition 40 8,000,000 320,000,000 9.35 s 34.22x10
6
 

Integer Subtraction 40 8,000,000 320,000,000 9.12 s 35.09x10
6
 

Integer Multiplication 58 8,000,000 464,000,000 18.21 s 25.48x10
6
 

Integer Division 50 8,000,000 400,000,000 33.72 s 11.86x10
6
 

Logical AND 20 8,000,000 160,000,000 0.71 s 225.35x10
6
 

Logical OR 20 8,000,000 160,000,000 0.64 s 250.00x10
6
 

Logical XOR 20 8,000,000 160,000,000 0.71 s 225.35x10
6
 

Integer Unit 2 
40 adds & 

multiplies 
8,000,000 640,000,000 48.75 s 13.13x10

6
 

Floating Point Add 20 8,000,000 160,000,000 0.82 s 195.12x10
6
 

Floating Point Subtract 20 8,000,000 160,000,000 0.82 s 195.12x10
6
 

Floating Point Multiply 20 8,000,000 160,000,000 0.83 s 192.77x10
6
 

Floating Point Divide 20 8,000,000 160,000,000 0.82 s 195.12x10
6
 

Branch Processing Unit 7 8,000,000 56,000,000 6.09 s 9.20x10
6
 

Load/Store Unit 
320 loads, 

192 stores 
80,000 40,960,000 13.24 s 3.09x10

6
 

Data Cache 2 3,300,000 6,600,000 15.97 s 0.41x10
6
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Results of Lowering Supply Voltage

Power PC-750 µP

Observations 
Chip 
No. 

No. 
Tests 

Critical Supply 
Voltage VC 

System 
Hangs 

Program 
Crashed  

1 45 1.99 V – 2.10 V 31 14 
2 35 2.00 V – 2.08 V 26 9 
3 25 2.10 V – 2.29 V 18 7 
4 25 2.08 V – 2.20 V 17 8 

 

Nominal Supply Voltage of 2.5 V is reduced in steps of
1/100th Volt with clock frequency constant at 233MHz

No Data Error was ever Observed at user visible Registers!
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More recent Experiment

� Processor: Pentium-M, speed step technology

� Rated at 2GHz at core voltage of 1.308V

� Experiment

� While keeping cpu 100% busy at 2GHz, reduced 
the voltage in steps of 16mV

� Third party software claimed to report errors

� Reduced voltage 15 steps down to 1.068 with no 
errors

� At the next step down to 1.052V, cpu crashed

� No errors observed – only crashes!

� Similar results at seven other frequencies
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Experiment on Pentium-M
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Some Remarks on Experiment

� Possible explanation for the observations

� A modern processor has a large number of flip-
flops that are not user visible

�e.g. Pre-fetch buffers, history tables, reservation 
stations, write buffers, and state controllers for 
everything from moving instructions and data to 
controlling a cache

� Control Logic fails simultaneously with ALU 
datapath

� Massive errors in control and data in a single cycle

� Instruction flow is completely disrupted. Therefore 
no error could be reported.  Catastrophic failure!
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Personal Remarks

� CMOS technology is robust now and will continue 
to be so for the foreseeable future

� Process Variation related errors if any, must be 
massive

� No industry can survive with massive failures

� Process variations must remain bounded within 

some reasonable limits

� Moore’s Law continues to hold!

� 45nm with (HiK+MG) has lower RDF and TOX 

variations than 65nm [Kelin J. Kuhn, Reducing Variation in Advanced Logic 

Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS, IEDM 

2007.]
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Exploiting Process Variations

� If the “critical operation point hypothesis” holds

� Above critical frequency FC massive failure occurs, 
below this point error-free operation results

� Below critical supply voltage VC massive failure 
occurs, above it error-free operation results

� In data-centers with 1000’s of µµµµPs, operating each 
µµµµP with the lowest VC for a given frequency can 
save lots of power

� As the number of cores approach 100 or more, it 
would be imperative to use different voltage-
frequency pair (FC, VC) for each core on the same 
die
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Dynamic Power Savings in Pentium-M
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Future Research

� Need to verify the proposed hypothesis with more 
experiments or simulations

� Off-line Test

� To determine several critical frequency-voltage pairs  (FC, VC)
for each die and possibly each core on the die

� On-line Test

� To establish new frequency-voltage pairs (FC, VC) in the field 
at the time of deployment

� To monitor aging, since (FC, VC) may shift with age

� Self-Test

� Self Calibrate periodically to arrive at current (FC, VC)
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Questions? Comments?
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