

The Power of Abstraction

Barbara Liskov
October 2010

Outline

 Inventing abstract data types
 CLU
 Type hierarchy
 What next

Data Abstraction
Prehistory

 The Venus machine

The Interdata 3

Data Abstraction
Prehistory

 The Venus machine
 The Venus operating system

Data Abstraction
Prehistory

 The Venus machine
 The Venus operating system
 Programming methodology

Programming Methodology

 How should programs be
designed?

 How should programs be
structured?

The Landscape

 E. W. Dijkstra. Go To Statement
Considered Harmful. Cacm, Mar.
1968

The Landscape

 N. Wirth. Program Development by
Stepwise Refinement. Cacm, April
1971

The Landscape

 D. L. Parnas. Information
Distribution Aspects of Design
Methodology. IFIP Congress, 1971

 “The connections between
modules are the assumptions
which the modules make about
each other.”

Partitions

 B. Liskov. A Design Methodology
for Reliable Software Systems.
FJCC, Dec. 1972

Partitions

Partition state

op1 op2 op3

From Partitions to ADTs

 How can these ideas be applied to
building programs?

Idea

 Connect partitions to data types

Meeting in Savanah

 ACM Sigplan-Sigops interface
meeting. April 1973. (Sigplan
Notices, Sept. 1973)

 Started to work with Steve Zilles

The Landscape

 Extensible Languages
 S. Schuman and P. Jourrand.

Definition Mechanisms in Extensible
Programming Languages. AFIPS. 1967

 R. Balzer. Dataless Programming.
FJCC 1967

The Landscape

 O-J. Dahl and C.A.R. Hoare.
Hierarchical Program Structures.
Structured Programming,
Academic Press, 1972

The Landscape

 J. H. Morris. Protection in
Programming Languages. Cacm.
Jan. 1973

The Landscape

 W. Wulf and M. Shaw. Global
Variable Considered Harmful.
Sigplan Notices. Feb. 1973.

Abstract Data Types

 B. Liskov and S. Zilles.
Programming with Abstract Data
Types. ACM Sigplan Conference on
Very High Level Languages. April
1974

What that paper proposed

 Abstract data types
 A set of operations
 And a set of objects
 The operations provide the only way

to use the objects

What that paper proposed

 Abstract data types
 Clusters with encapsulation

 Polymorphism
 Static type checking (we hoped)
 Exception handling

From ADTs to CLU

 Participants
 Russ Atkinson
 Craig Schaffert
 Alan Snyder

Why a Programming
Language?

 Communicating to programmers
 Do ADTs work in practice?
 Getting a precise definition
 Achieving reasonable performance

Language Design

 Goals
 Expressive power, simplicity,

performance, ease of use

 Minimality
 Uniformity
 Safety

Language Design

 Restrictions
 No concurrency
 No go tos
 No inheritance

Some
Assumptions/Decisions

 Heap-based with garbage
collection!

 No block structure!
 Separate compilation
 Static type checking

CLU Mechanisms

 Clusters
 Polymorphism
 Exception handling
 Iterators

Clusters

IntSet = cluster is create, insert, delete,
isIn, …

end IntSet

Clusters

IntSet = cluster is create, insert, delete, …
end IntSet

IntSet s := IntSet$create()
IntSet$insert(s, 3)

Clusters

IntSet = cluster is create, insert, delete,
…

 rep = array[int]

Clusters

IntSet = cluster is create, insert, delete,
…

 rep = array[int]

 create = proc () returns (cvt)
 return (rep$create())
 end create

Polymorphism

Set = cluster[T: type] is create, insert,
…

end Set

Set[int] s := Set[int]$create()
Set[int]$insert(s, 3)

Polymorphism

Set = cluster[T: type] is create, insert, …
 where T has equal: proctype(T, T)
 returns (bool)

Polymorphism

Set = cluster[T: type] is create, insert, …
 where T has equal: proctype(T, T)
 returns (bool)

 rep = array[T]

 insert = proc (x: cvt, e: T)
 … if e = x[i] then …

Exception Handling

 J. Goodenough. Exception
Handling: Issues and a Proposed
Notation. Cacm, Dec. 1975
 Termination vs. resumption
 How to specify handlers

Exception Handling

 choose = proc (x: cvt) returns (T)

 signals (empty)
 if rep$size() = 0 then signal empty
 …

Exception Handling

 choose = proc (x: cvt) returns (T)

 signals (empty)
 if rep$size() = 0 then signal empty
 …

 set[T]$ choose(s)
 except when empty: …

Exception Handling

 Handling
 Propagating
 Shouldn’t happen

 The failure exception
 Principles

 Accurate interfaces
 Avoid useless code

Iterators

 For all x in C do S

Iterators

 For all x in C do S
 Destroy the collection?
 Complicate the abstraction?

Visit to CMU

 Bill Wulf and Mary Shaw, Alphard
 Generators

Iterators

sum: int := 0
for e: int in Set[int]$members(s) do
 sum := sum + e
 end

Iterators

Set = cluster[T] is create, …, members, …

 rep = array[T]

 members = iter (x: cvt) yields (T)
 for z: T in rep$elements(x) do
 yield (z) end

After CLU

 Argus and distributed computing
 Type Hierarchy

The Landscape

 Inheritance was used for:
 Implementation
 Type hierarchy

Type hierarchy

 Wasn’t well understood
 E.g., stacks vs. queues

The Liskov Substitution
Principle (LSP)

 Objects of subtypes should behave
like those of supertypes if used via
supertype methods

 B. Liskov. Data abstraction and
hierarchy. Sigplan notices, May
1988

What Next?

 Modularity based on abstraction is
the way things are done

Challenges

 New abstraction mechanisms?
 Massively Parallel Computers
 Internet Computer

 Storage and computation
 Semantics, reliability, availability,

security

The Power of Abstraction

Barbara Liskov
October 2010

	The Power of Abstraction
	Outline
	Data Abstraction Prehistory
	The Interdata 3
	Slide 5
	Slide 6
	Programming Methodology
	The Landscape
	Slide 9
	Slide 10
	Partitions
	Partitions
	From Partitions to ADTs
	Idea
	Meeting in Savanah
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Abstract Data Types
	What that paper proposed
	Slide 22
	From ADTs to CLU
	Slide 24
	Why a Programming Language?
	Language Design
	Slide 27
	Some Assumptions/Decisions
	CLU Mechanisms
	Clusters
	Slide 31
	Slide 32
	Slide 33
	Polymorphism
	Slide 35
	Slide 36
	Exception Handling
	Slide 38
	Slide 39
	Slide 40
	Iterators
	Slide 42
	Visit to CMU
	Slide 44
	Slide 45
	After CLU
	Slide 47
	Type hierarchy
	The Liskov Substitution Principle (LSP)
	What Next?
	Challenges
	Slide 52

