

 COMPUTING with HIGH-DIMENSIONAL VECTORS

 Pentti Kanerva

 UC Berkeley,
 Redwood Center for Theoretical Neuroscience
 Stanford, CSLI
 pkanerva@csli.stanfrod.edu

 . Motivation and Background
 . What is HD Computing?
 . Example from Language
 . HD Computing Architecture
 . The Math that Makes HD Computing Work
 . Contrast with Neural Nets/Deep Learning
 . Summary

 1

 MOTIVATION AND BACKGROUND

Brains represent a constant challenge to our
models of computing: von Neumann, AI, Neural Nets,
Deep Learning

 . Complex behavior

 - Perception, learning
 - Concepts, thought, language, ambiguity
 - Flexibility, adaptivity

 . Robustness

 - Sensory signals are variable and noisy
 - Neurons malfunction and die

 . Energy efficiency

 - 20 W

 2

Brains provide clues to computing architecture

 . Very large circuits

 - 40 billion (4 x 1010) neurons

 - 240 trillion (2.4 x 1014) synapses

 Assuming 1 bit per synapse -> 30 Terabytes
 = 30 million books
 = 800 books per day for 100 years

 . Large fan-ins and fan-outs
 - Up to 200,000 per neuron
 - 6,000 per neuron on average

 . Activity is widely distributed, highly parallel

 3

However, reverse-engineering the brain in the
absence of an adequate theory of computing is
next to impossible

The theory must explain

 . Speed of learning

 . Retention over a lifetime

 . Generalization from examples

 . Reasoning by analogy

 . Tolerance for variability and noise in data

 4

KEY OBSERVATIONS

Essential properties of mental functions and
perception can be explained by the mathematical
properties of high-dimensional spaces

 . Distance between concepts in semantic space

 - Distant concepts connected by short links

 man ≉ lake
 man ≈ fisherman ≈ fish ≈ lake
 man ≈ plumber ≈ water ≈ lake

 . Recognizing faces: never the same twice

Dimensionality expansion rather than reduction

 . Visual cortex, hippocampus, cerebellum

 5

 WHAT IS HIGH-DIMENSIONAL (HD) COMPUTING?

It is a system of computing that operates on
high-dimensional vectors

 . The algorithms are based on operations on
 vectors

Traditional computing operates on bits and numbers

 . Built-in circuits for arithmetic and for
 Boolean logic

 6

ROOTS in COGNITIVE SCIENCE

The idea of computing with high-dimensional
vectors is not new

 . 1950s - Von Neumann: The Computer and the Brain

 . 1960s – Rosenblatt: Perceptron

 . 1970s and '80s - Artificial Neural Nets/
 Parallel Distributed Processing/Connectionism

 . 1990s – Plate: Holographic Reduced Representation

What is new?

 . Nanotechnology for building very large systems

 - In need of a compatible theory of computing

 7

 AN EXAMPLE OF HD ALGORITHM:
 Identify the Language

MOTIVATION: People can identify languages by how
they sound, without knowing the language

We emulated it with identifying languages by how
they look in print, without knowing any words

METHOD

 . Compute a 10,000-dimensional profile vector for
 each language and for each test sentence

 . Compare profiles and choose the closest one

 8

DATA

 . 21 European Union languages

 . Transcribed in Latin alphabet

 . "Trained" with a million bytes of text
 per language

 . Tested with 1,000 sentences per language
 from an independent source

 9

COMPUTING a PROFILE

Step 1. ENCODE LETTERS with 27 seed vectors

 10K random, equally probable +1s and -1s

 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 +1 -1)
 B = (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1)
 C = (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1)
 ...
 Z = (-1 -1 -1 -1 +1 +1 +1 ... -1 +1 -1)
 # = (+1 +1 +1 +1 -1 -1 +1 ... +1 +1 -1)

stands for the space

All languages use the same set of letter vectors

 10

Step 2. ENCODE TRIGRAMS with rotate and multiply

 Example: "the" is encoded by the 10K-dimensional
 vector THE

 Rotation of coordinates
 .->------------->------------->.
 / \
 / \
 T = (+1 -1 -1 +1 -1 -1 . . . +1 +1 -1 -1) . .
 H = (+1 -1 +1 +1 +1 +1 . . . +1 -1 +1 -1) .
 E = (+1 +1 +1 -1 -1 +1 . . . +1 -1 +1 +1)

 THE = (+1 +1 -1 +1 +1 +1 -1 -1)

 11

In symbols:

 THE = rrT * rH * E

where

 r is 1-position rotate (it's a permutation)
 * is componentwise multiply

The trigram vector THE is approximately orthogonal
to all the letter vectors A, B, C, ..., Z and to
all the other (19,682) possible trigram vectors

 12

Step 3. ACCUMULATE PROFILE VECTOR

Add all trigram vectors of a text into a 10,000-D
Profile Vector. For example, the text segment

 "the quick brown fox jumped over ..."

gives rise to the following trigram vectors,
which are added into the profile for English

 Eng += THE + HE# + E#Q + #QU + QUI + UIC + ...

NOTE: Profile is a HD vector that summarizes
short letter sequences (trigrams) of the text;
it’s histogram of a kind

 13

Step 4. TEST THE PROFILES of 21 EU languages

 . Similarity between vectors/profiles: Cosine

 cos(X, X) = 1
 cos(X,-X) = -1
 cos(X, Y) = 0 if X and Y are orthogonal

 14

Step 4a. Projected onto a plane, the profiles
 cluster in language families

 Italian
 * *Romanian
 Portuguese
 * *Spanish
 *Slovene *French
*Bulgari *Czech
 *Slovak *English
 *Greek
 *Polish *Lithuanian
 *Latvian
 *Estonian
 * *Finnish
 Hungarian

 *Dutch
 *Danish *German
 *Swedish

 15

Step 4b. The language profiles were compared to
 the profiles of 21,000 test sentences (1,000
 sentences from each language)

 The best match agreed with the correct
 language 97.3% of the time

Step 5. The profile for English, Eng, was queried
 for the letter most likely to follow "th". It
 is "e", with space, "a", "i", "r", and "o" the
 next-most likely, in that order

 . Form query vector: Q = rrT * rH
 . Query by using multiply: X = Q*Eng
 . Find closest letter vectors:

 X ≈ E, #, A, I, R, O

 16

Summary of Algorithm

 . Start with random 10,000-D bipolar vectors for
 letters

 . Compute 10,000-D vectors for trigrams with
 permute (rotate) and multiply

 . Add all trigram vectors into a 10,000-D profile
 for the language or the test sentence

 . Compare profiles with cosine

 17

Speed

The entire experiment ("training" and testing)
takes less than 8 minutes on a laptop computer

Simplicity and Scalability

It is equally easy to compute profiles from
 . all 531,441 possible 4-letter sequences, or
 . all 14,348,907 possible 5-letter sequences, or
 . all 387,420,489 possible 6-letter sequences, or
 . all ... or
from combinations thereof

Reference

Joshi, A., Halseth, J., and Kanerva, P. (2017).
 Language geometry using random indexing. In
 J. A. de Barros, B. Coecke & E. Pothos (eds.)
 Quantum Interaction, 10th International
 Conference, QI 2016, pp. 265-274. Springer.
`

 18

 ARCHITECTURE FOR HIGH-DIMENSIONAL COMPUTING

Computing with HD vectors resembles traditional
computing with bits and numbers

 . Circuits (ALU) for operations on HD vectors

 . Memory (RAM) for storing HD vectors

Main differences beyond high dimensionality

 . Distributed (holographic) representation

 - Computing in superposition

 . Beneficial use of randomness

 19

Illustrated with binary vectors:

 . Computing with 10,000-bit words

Binary and bipolar are mathematically equivalent

 . binary 0 <--> bopolar 1
 . binary 1 <--> bipolar -1
 . XOR <--> multiply
 . majority <--> sign

Note, and not to confuse:

 . Although XOR is addition modulo 2, it is the
 multiplication operator for binary vectors

 20

10K-BIT ARITHMETIC (ALU)

 OPERATIONS correspond to those with numbers

 . "ADD" vectors

 - Coordinatewise majority: A = [B + C + D]

 . "MULTIPLY" vectors

 - Coordinatewise Exclusive-Or, XOR: M = A*B

 ++ PERMUTE (rotate) vector coordinates: P = rA

 . COMPARE vectors for similarity

 - Hamming distance, cosine

 21

10K-BIT WIDE MEMORY (high-D "RAM")

 Neural-net associative memory (e.g., Sparse
 Distributed Memory, 1984)

 . Addressed with 10,000-bit words

 . Stores 10,000-bit words

 . Addresses can be noisy

 . Can be made arbitrarily large

 - for a lifetime of learning

 . Circuit resembling cerebellum's

 - David Marr (1969), James Albus (1971)

 22

DISTRIBUTED (HOLOGRAPHIC) ENCODING OF DATA

Example: h = {x = a, y = b, z = c}

 TRADITIONAL record with fields
 x y z
 .---------.---------.---------.
 | a | b | c |
 '---------'---------'---------'
 bits 1 ... 64 65 .. 128 129 .. 192

 DISTRIBUTED, SUPERPOSED, N = 10,000, no fields
 .--.
 | x = a, y = b, z = c |
 '--'
 bits 1 2 3 ... 10,000

 23

ENCODING h = {x = a, y = b, z = c}

 The variables x, y, z and the values a, b, c
 are represented by random 10K-bit seed vectors
 X, Y, Z, A, B and C.

 24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

 24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 x = a

 ...24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 x = a

 Y = 10001...10
 B = 11111...00

Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0 y = b

 ..24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 x = a

 Y = 10001...10
 B = 11111...00

Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0 y = b

 Z = 01101...01
 C = 10001...01

Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0 z = c

 .24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 x = a

 Y = 10001...10
 B = 11111...00

Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0 y = b

 Z = 01101...01
 C = 10001...01

Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0 z = c

 Sum = 2 2 3 1 1 ... 2 0

 24

ENCODING h = {x = a, y = b, z = c}

 X = 10010...01 X and A are bound with XOR
 A = 00111...11

X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 x = a

 Y = 10001...10
 B = 11111...00

Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0 y = b

 Z = 01101...01
 C = 10001...01

Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0 z = c

 Sum = 2 2 3 1 1 ... 2 0
 Majority = 1 1 1 0 0 ... 1 0 = H

 ...25

DECODING: What's the value of X in H?

 ..25

DECODING: What's the value of X in H?

 H = 1 1 1 0 0 ... 1 0
 X = 1 0 0 1 0 ... 0 1

 .25

DECODING: What's the value of X in H?

 "Un"bind H H = 1 1 1 0 0 ... 1 0
 with the X = 1 0 0 1 0 ... 0 1
 inverse ------------------------
 of X X*H = 0 1 1 1 0 ... 1 1 = A' ≈ A

 25

DECODING: What's the value of X in H?

 "Un"bind H H = 1 1 1 0 0 ... 1 0
 with the X = 1 0 0 1 0 ... 0 1
 inverse ------------------------
 of X X*H = 0 1 1 1 0 ... 1 1 = A' ≈ A
 |
 v
 .----------------------.
 | |
 | ASSOCIATIVE MEMORY |
 | finds |
 | nearest neighbor |
 | among stored vectors |
 | |
 '----------------------'
 |
 v
 0 0 1 1 1 ... 1 1 = A

 26

In symbols:

Encoding of h = {x = a, y = b, z = c}
with majority rule

 H = [X*A + Y*B + Z*C]

What's the value of X in H?

 X*H = X * [X*A + Y*B + Z*C]
 = [X*X*A + X*Y*B + X*Z*C] (1)
 = [A + noise + noise] (2)
 ≈ A

 (1) because * distributes over +
 (2) X*X cancels out because XOR (*) is
 its own inverse
 "noise" means: dissimilar to any known vector,
 approximately orthogonal

 27

 THE MATH THAT MAKES HD COMPUTING WORK

 . A randomly chosen vector is dissimilar to any
 vector seen so far--approximately orthogonal

 . Addition produces a vector that is similar and
 multiplication and permutation produce vectors
 that are dissimilar to the input vectors

 . Multiplication is invertible and distributes
 over addition

 . Permutation is invertible and distributes
 over both addition and multiplication

 . Multiplication and permutation preserve
 similarity

 28

COMPUTING with HD VECTORS IS BEST UNDERSTOOD
in (modern/abstract) ALGEBRA TERMS

 . Three operations on vectors produce a vector
 of the same dimensionality

 - Addition
 - Multiplication
 - Permutation

 . Addition and multiplication approximate an
 algebraic field over the vector space

 - NOTE: The usefulness of arithmetic with
 numbers is based on the same idea:
 addition and multiplication form a field

 . Permutation adds richness to HD algebra

 29

HIGH DIMENSIONALITY is the KEY

 . In 10,000 dimensions there are 10,000 mutually
 orthogonal vectors but billions of nearly
 orthogonal vectors

 . A randomly chosen vector is nearly orthogonal
 to any that has been seen so far--and could
 have been stored in the system's memory

FIGURE 1 (next page). Distribution of distances
in 15-dimensional and 10,000-dimensional spaces.
In 10,000-D most vectors/points are nearly
orthogonal (d ≈ 0.5) to any given vector.

 ------ Binomial with
 N = 10,000
 o o

 o o
 N = 15
 /
 Any point o o
 /
 / o o
 o o o o o o o o
 | |
 0 .47 .53 1
 | | | |
 | 0.999999998 |
 |<-- 0.000000001 --->| |<--- 0.000000001 -->|

 Similar, Dissimilar, Opposite
 correlated uncorrelated

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

 31

 CONTRAST with NEURAL NETS/DEEP LEARNING

Major similarities

 . Statistical learning from data

 . Data can be noisy

 . Both use high-dimensional vectors, although
 neural-net learning algorithms bog down when
 dimensionality gets very high (e.g., 10K)

 32

Major differences

 . HD computing is founded on rich and powerful
 mathematical theory rather than on heuristics

 . New codewords are made from existing ones in a
 single application of the HD vector operations

 . HD memory is a separate function

- Sores data and retrieves the best match
 (nearest-neighbor search)

 As a consequence, HD algorithms are

 - transparent,

 - incremental (on-line), and

 - scalable

 33

 Contrasted with neural nets that train large
 matrices of weights in multiple passes over
 the training data

- As a consequence, encoding and data storage
 become entangled in hard-to-fathom black
 boxes

 The neural-net/deep-learning paradigm suggests
 no particular role for a structure like the
 cerebellum, which contains over half the neurons
 in the brain

 34

 SUMMARY

 . HD Computing is based on the rich and often
 subtle mathematics of high-dimensional spaces

 - Not a subset of linear algebra

 . High dimensionality (10K) is more important
 than the nature of the dimensions

 - Multiply and add operators of the right kind
 exist also for real and complex vectors

 . Holographic/holistic representation makes
 high-D computing robust and brainlike

 35
FORECAST

 . A new breed of computers will be built
 exploiting the mathematics of high-D spaces
 and properties of nanomaterials

 . Simpler, faster, more powerful machine-learning
 algorithms become possible

 - Vision: relational reasoning
 -- "What's below 2 and to the left of 1?"

 - Language: analogical reasoning
 -- "What's the Dollar of Mexico?"

 - Streaming data: multi-sensor integration

 - Autonomous robots

 - Open-ended evolving systems

 36

WHAT NEXT?

 We need to become fluent in high-dimensional
 computing

 . Explore HD algorithms
 - Machine learning
 - Language
 - Big Data

 . Today's computers are more than adequate also
 for many applications
 - Semantic vectors: Gavagai AB in Sweden
 - Classifying gestures from 64-channel EMG

 . Explore nanomaterials

 . Build into circuits and systems

 37

 T h a n k Y o u!

Supported by

 . Japan 's MITI grant to Swedish Institute of
 Computer Science under Real World Computing
 (RWC) program

 . Systems on Nanoscale Information fabriCs
 (SONIC), one of the six SRC STARnet Centers,
 sponsored by MARCO and DARPA

 . Intel Strategic Research Alliance program on
 Neuromorphic Architectures for Mainstream
 Computing

 . NSF 16-526: Energy-Efficient Computing: from
 Devices to Architectures (E2CDA). A Joint
 Initiative between NSF and SRC

 38
EARLY CONTRIBUTIONS, 1990-2010

Tony Plate: Holographic Reduced Representation (HRR)

Ross Gayler: Multiply-Add-Permute (MAP) architecture

Gayler & Levi: Vector-Symbolic Architecture (VSA)

Rachkovskij & Kussul: Context-Dependent Thinning

Dominic Widdows: Geometry and Meaning

Widdows & Cohen: Predication-based Semantic
 Indexing (PSI)

Chris Eliasmith: Semantic Pointer Architecture
 Unified Network (SPAUN)

Gallant & Okaywe: Matrix Binding of Additive Terms

My: Sparse Distributed Memory, Binary Spatter Code,
 Random Indexing, Hyperdimensional Computing

Stanford EE Computer Systems Colloquium (EE380)
4:30 pm on Wednesday October 25, 2017 at B03 Gates

Computing with High-Dimensional Vector

Pentti Kanerva, UC Berkeley & Stanford

Abstract

Computing with high-dimensional vectors complements traditional
computing and occupies the gap between symbolic AI and artificial
neural nets. Traditional computing treats bits, numbers, and memory
pointers as basic objects on which all else is built. I will consider
the possibility of computing with high-dimensional vectors as basic
objects, for example with 10,000-bit words, when no individual bit nor
subset of bits has a meaning of its own--when any piece of information
encoded into a vector is distributed over all components. Thus a
traditional data record subdivided into fields is encoded as a
high-dimensional vector with the fields superposed.

Computing power arises from the operations on the basic objects-—
from what is called their algebra. Operations on bits form Boolean
algebra, and the addition and multiplication of numbers form an
algebraic structure called a "field." Two operations on high-
dimensional vectors correspond to the addition and multiplication
of numbers. With permutation of coordinates as the third operation,
we end up with a system of computing that in some ways is richer and
more powerful than arithmetic, and also different from linear algebra.
Computing of this kind was anticipated by von Neumann, described by

Plate, and has proven to be possible in high-dimensional spaces of
different kinds.

The three operations, when applied to orthogonal or nearly orthogonal
vectors, allow us to encode, decode and manipulate sets, sequences,
lists, and arbitrary data structures. One reason for high
dimensionality is that it provides a nearly endless supply of nearly
orthogonal vectors. Making of them is simple because a randomly
generated vector is approximately orthogonal to any vector encountered
so far. The architecture includes a memory which, when cued with a
high-dimensional vector, finds its nearest neighbors among the stored
vectors. A neural-net associative memory is an example of such.

Circuits for computing in high-D are thousands of bits wide but the
components need not be ultra-reliable nor fast. Thus the architecture
is a good match to emerging nanotechnology, with applications in many
areas of machine learning. I will demonstrate high-dimensional
computing with a simple algorithm for identifying languages.

