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             MOTIVATION AND BACKGROUND 
 
Brains represent a constant challenge to our 
models of computing: von Neumann, AI, Neural Nets, 
Deep Learning 
 
 . Complex behavior 
 
   - Perception, learning 
   - Concepts, thought, language, ambiguity 
   - Flexibility, adaptivity 
 
 . Robustness 
 
   - Sensory signals are variable and noisy 
   - Neurons malfunction and die 
 
 . Energy efficiency 
 
   - 20 W 
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Brains provide clues to computing architecture 
 
 . Very large circuits 
 

   - 40 billion (4 x 1010) neurons 

   - 240 trillion (2.4 x 1014) synapses 
 
       Assuming 1 bit per synapse -> 30 Terabytes 
       = 30 million books 
       = 800 books per day for 100 years 
 
 . Large fan-ins and fan-outs 
    - Up to 200,000 per neuron 
    - 6,000 per neuron on average 
 
 . Activity is widely distributed, highly parallel  
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However, reverse-engineering the brain in the  
absence of an adequate theory of computing is  
next to impossible 
 
The theory must explain 
 
 . Speed of learning 
 
 . Retention over a lifetime 
 
 . Generalization from examples 
 
 . Reasoning by analogy 
 
 . Tolerance for variability and noise in data 
 
 . ... 
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KEY OBSERVATIONS 
 
Essential properties of mental functions and 
perception can be explained by the mathematical 
properties of high-dimensional spaces 
 
 . Distance between concepts in semantic space 
 
   - Distant concepts connected by short links 
 
     man ≉ lake 
     man ≈ fisherman ≈ fish ≈ lake 
     man ≈ plumber ≈ water ≈ lake 
 
 . Recognizing faces: never the same twice 
 
Dimensionality expansion rather than reduction 
 
 . Visual cortex, hippocampus, cerebellum 
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     WHAT IS HIGH-DIMENSIONAL (HD) COMPUTING? 
 
 
It is a system of computing that operates on 
high-dimensional vectors 
 
 . The algorithms are based on operations on 
   vectors 
 
 
Traditional computing operates on bits and numbers 
 
 . Built-in circuits for arithmetic and for 
   Boolean logic 
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ROOTS in COGNITIVE SCIENCE 
 
The idea of computing with high-dimensional 
vectors is not new 
 
 . 1950s - Von Neumann: The Computer and the Brain 
 
 . 1960s – Rosenblatt: Perceptron 
 
 . 1970s and '80s - Artificial Neural Nets/ 
   Parallel Distributed Processing/Connectionism 
 
 . 1990s – Plate: Holographic Reduced Representation 
 
What is new? 
 
 . Nanotechnology for building very large systems 
 
   - In need of a compatible theory of computing 
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            AN EXAMPLE OF HD ALGORITHM:  
              Identify the Language 
 
 
MOTIVATION: People can identify languages by how 
they sound, without knowing the language 
 
We emulated it with identifying languages by how 
they look in print, without knowing any words 
 
METHOD 
 
 . Compute a 10,000-dimensional profile vector for 
   each language and for each test sentence 
 
 . Compare profiles and choose the closest one 
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DATA 
 
 . 21 European Union languages 
 
 . Transcribed in Latin alphabet 
 
 . "Trained" with a million bytes of text 
   per language 
 
 . Tested with 1,000 sentences per language 
   from an independent source 
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COMPUTING a PROFILE 
 
Step 1. ENCODE LETTERS with 27 seed vectors 
 
  10K random, equally probable +1s and -1s 
 
  A  =  (-1 +1 -1 +1 +1 +1 -1 ... +1 +1 -1) 
  B  =  (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1) 
  C  =  (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1) 
    ... 
  Z  =  (-1 -1 -1 -1 +1 +1 +1 ... -1 +1 -1) 
  #  =  (+1 +1 +1 +1 -1 -1 +1 ... +1 +1 -1) 
 
# stands for the space 
 
 
All languages use the same set of letter vectors 
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Step 2. ENCODE TRIGRAMS with rotate and multiply 
 
  Example: "the" is encoded by the 10K-dimensional 
  vector THE 
 
 
                  Rotation of coordinates 
             .->------------->------------->. 
            /                                \ 
           /                                  \ 
 T =  (+1 -1 -1 +1 -1 -1 . . . +1 +1 -1 -1) .  . 
    H =  (+1 -1 +1 +1 +1 +1 . . . +1 -1 +1 -1) . 
       E =  (+1 +1 +1 -1 -1 +1 . . . +1 -1 +1 +1) 
------------------------------------------------- 
 THE   =    (+1 +1 -1 +1 . . . . . . +1 +1 -1 -1) 
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In symbols: 
 
  THE = rrT * rH * E 
 
where 
 
  r is 1-position rotate (it's a permutation) 
  * is componentwise multiply 
 
 
The trigram vector THE is approximately orthogonal 
to all the letter vectors A, B, C, ..., Z and to 
all the other (19,682) possible trigram vectors 
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Step 3. ACCUMULATE PROFILE VECTOR 
 
Add all trigram vectors of a text into a 10,000-D 
Profile Vector.  For example, the text segment 
 
  "the quick brown fox jumped over ..." 
 
gives rise to the following trigram vectors, 
which are added into the profile for English 
 
  Eng += THE + HE# + E#Q + #QU + QUI + UIC + ... 
 
 
NOTE: Profile is a HD vector that summarizes 
short letter sequences (trigrams) of the text; 
it’s histogram of a kind 
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Step 4. TEST THE PROFILES of 21 EU languages 
 
 . Similarity between vectors/profiles: Cosine 
 
      cos(X, X) = 1 
      cos(X,-X) = -1 
      cos(X, Y) = 0 if X and Y are orthogonal 
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Step 4a. Projected onto a plane, the profiles 
     cluster in language families 
 
                                      Italian 
                                       *    *Romanian 
                                      Portuguese 
                                       *    *Spanish 
     *Slovene                                   *French 
*Bulgari *Czech 
      *Slovak                                    *English 
                           *Greek 
   *Polish                      *Lithuanian 
                                 *Latvian 
                           *Estonian 
                    *       *Finnish 
                   Hungarian 
 
 
                                                *Dutch 
                                        *Danish  *German 
                                           *Swedish 
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Step 4b. The language profiles were compared to 
    the profiles of 21,000 test sentences (1,000 
    sentences from each language) 
 
    The best match agreed with the correct 
    language 97.3% of the time 
 
 
Step 5. The profile for English, Eng, was queried 
    for the letter most likely to follow "th".  It 
    is "e", with space, "a", "i", "r", and "o" the 
    next-most likely, in that order 
 
     . Form query vector:  Q = rrT * rH 
     . Query by using multiply:  X = Q*Eng 
     . Find closest letter vectors: 
 
         X ≈ E, #, A, I, R, O 
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Summary of Algorithm 
 
 . Start with random 10,000-D bipolar vectors for 
   letters 
 
 . Compute 10,000-D vectors for trigrams with 
   permute (rotate) and multiply 
 
 . Add all trigram vectors into a 10,000-D profile 
   for the language or the test sentence 
 
 . Compare profiles with cosine 
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Speed 
 
The entire experiment ("training" and testing) 
takes less than 8 minutes on a laptop computer 
 
Simplicity and Scalability 
 
It is equally easy to compute profiles from 
 . all 531,441 possible 4-letter sequences, or 
 . all 14,348,907 possible 5-letter sequences, or 
 . all 387,420,489 possible 6-letter sequences, or 
 . all ... or 
from combinations thereof 
 
Reference 
 
Joshi, A., Halseth, J., and Kanerva, P. (2017). 
   Language geometry using random indexing. In 
   J. A. de Barros, B. Coecke & E. Pothos (eds.) 
   Quantum Interaction, 10th International 
   Conference, QI 2016, pp. 265-274. Springer. 
`
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   ARCHITECTURE FOR HIGH-DIMENSIONAL COMPUTING 
 
 
Computing with HD vectors resembles traditional 
computing with bits and numbers 
 
 . Circuits (ALU) for operations on HD vectors 
 
 . Memory (RAM) for storing HD vectors 
 
Main differences beyond high dimensionality 
 
 . Distributed (holographic) representation 
 
   - Computing in superposition 
 
 . Beneficial use of randomness 
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Illustrated with binary vectors: 
 
 . Computing with 10,000-bit words 
 
Binary and bipolar are mathematically equivalent 
 
 . binary 0  <-->  bopolar 1 
 . binary 1  <-->  bipolar -1 
 . XOR       <-->  multiply 
 . majority  <-->  sign 
  
Note, and not to confuse: 
 
 . Although XOR is addition modulo 2, it is the 
   multiplication operator for binary vectors 
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10K-BIT ARITHMETIC (ALU) 
 
  OPERATIONS correspond to those with numbers 
 
   . "ADD" vectors 
 
     - Coordinatewise majority:  A = [B + C + D] 
 
   . "MULTIPLY" vectors 
 
     - Coordinatewise Exclusive-Or, XOR:  M = A*B 
 
  ++ PERMUTE (rotate) vector coordinates:  P = rA 
 
   . COMPARE vectors for similarity 
 
     - Hamming distance, cosine 
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10K-BIT WIDE MEMORY (high-D "RAM") 
 
  Neural-net associative memory (e.g., Sparse 
  Distributed Memory, 1984) 
 
   . Addressed with 10,000-bit words 
 
   . Stores 10,000-bit words 
 
   . Addresses can be noisy 
 
   . Can be made arbitrarily large 
 
     - for a lifetime of learning 
 
   . Circuit resembling cerebellum's 
 
     - David Marr (1969), James Albus (1971) 
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DISTRIBUTED (HOLOGRAPHIC) ENCODING OF DATA 
 
Example:  h = {x = a, y = b, z = c} 
 
 
   TRADITIONAL record with fields 
      x         y         z 
     .---------.---------.---------. 
     |    a    |    b    |    c    | 
     '---------'---------'---------' 
 bits 1  ... 64 65 .. 128 129 .. 192 
 
 
   DISTRIBUTED, SUPERPOSED,  N = 10,000, no fields 
     .------------------------------------------. 
     |           x = a, y = b, z = c            | 
     '------------------------------------------' 
 bits 1 2 3 ...                            10,000 
 
  



                                                   23 
 
ENCODING  h = {x = a, y = b, z = c} 
 
  The variables x, y, z and the values a, b, c 
  are represented by random 10K-bit seed vectors 
  X, Y, Z, A, B and C. 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0     x = a 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0     x = a 
 
 Y  = 10001...10 
 B  = 11111...00 
---------------- 
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0     y = b 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0     x = a 
 
 Y  = 10001...10 
 B  = 11111...00 
---------------- 
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0     y = b 
 
 Z  = 01101...01 
 C  = 10001...01 
---------------- 
Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0     z = c 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0     x = a 
 
 Y  = 10001...10 
 B  = 11111...00 
---------------- 
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0     y = b 
 
 Z  = 01101...01 
 C  = 10001...01 
---------------- 
Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0     z = c 
                   ---------------------------- 
             Sum =  2 2 3 1 1 ... 2 0 
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ENCODING  h = {x = a, y = b, z = c} 
 
 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0     x = a 
 
 Y  = 10001...10 
 B  = 11111...00 
---------------- 
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0     y = b 
 
 Z  = 01101...01 
 C  = 10001...01 
---------------- 
Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0     z = c 
                   ---------------------------- 
             Sum =  2 2 3 1 1 ... 2 0 
        Majority =  1 1 1 0 0 ... 1 0  = H 
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DECODING:  What's the value of X in H? 
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DECODING:  What's the value of X in H? 
 
 
              H  =  1 1 1 0 0 ... 1 0 
              X  =  1 0 0 1 0 ... 0 1 
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DECODING:  What's the value of X in H? 
 
 
 "Un"bind H   H  =  1 1 1 0 0 ... 1 0 
  with the    X  =  1 0 0 1 0 ... 0 1 
  inverse    ------------------------ 
   of X      X*H =  0 1 1 1 0 ... 1 1  = A' ≈ A 
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DECODING:  What's the value of X in H? 
 
 
 "Un"bind H   H  =  1 1 1 0 0 ... 1 0 
  with the    X  =  1 0 0 1 0 ... 0 1 
  inverse    ------------------------ 
   of X      X*H =  0 1 1 1 0 ... 1 1  = A' ≈ A 
                           | 
                           v 
                .----------------------. 
                |                      | 
                |  ASSOCIATIVE MEMORY  | 
                |        finds         | 
                |   nearest neighbor   | 
                | among stored vectors | 
                |                      | 
                '----------------------' 
                           | 
                           v 
                    0 0 1 1 1 ... 1 1  = A 
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In symbols: 
 
Encoding of h = {x = a, y = b, z = c} 
with majority rule 
 
  H = [X*A + Y*B + Z*C] 
 
What's the value of X in H? 
 
  X*H = X * [X*A + Y*B + Z*C] 
      = [X*X*A + X*Y*B + X*Z*C]    (1) 
      = [    A + noise + noise]    (2) 
      ≈ A 
 
  (1) because * distributes over + 
  (2) X*X cancels out because XOR (*) is 
      its own inverse 
  "noise" means: dissimilar to any known vector, 
      approximately orthogonal
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      THE MATH THAT MAKES HD COMPUTING WORK 
 
 
 . A randomly chosen vector is dissimilar to any 
   vector seen so far--approximately orthogonal 
 
 . Addition produces a vector that is similar and 
   multiplication and permutation produce vectors 
   that are dissimilar to the input vectors 
 
 . Multiplication is invertible and distributes 
   over addition 
 
 . Permutation is invertible and distributes 
   over both addition and multiplication 
 
 . Multiplication and permutation preserve 
   similarity 
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COMPUTING with HD VECTORS IS BEST UNDERSTOOD 
in (modern/abstract) ALGEBRA TERMS 
 
 . Three operations on vectors produce a vector 
   of the same dimensionality 
 
   - Addition 
   - Multiplication 
   - Permutation 
 
 . Addition and multiplication approximate an 
   algebraic field over the vector space 
 
   - NOTE: The usefulness of arithmetic with 
     numbers is based on the same idea: 
     addition and multiplication form a field 
 
 . Permutation adds richness to HD algebra 
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HIGH DIMENSIONALITY is the KEY 
 
 . In 10,000 dimensions there are 10,000 mutually 
   orthogonal vectors but billions of nearly 
   orthogonal vectors 
 
 . A randomly chosen vector is nearly orthogonal 
   to any that has been seen so far--and could 
   have been stored in the system's memory 
 
 
 
FIGURE 1 (next page).  Distribution of distances 
in 15-dimensional and 10,000-dimensional spaces. 
In 10,000-D most vectors/points are nearly 
orthogonal (d ≈ 0.5) to any given vector. 
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     CONTRAST with NEURAL NETS/DEEP LEARNING 
 
 
Major similarities 
 
 . Statistical learning from data 
 
 . Data can be noisy 
 
 . Both use high-dimensional vectors, although 
   neural-net learning algorithms bog down when 
   dimensionality gets very high (e.g., 10K) 
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Major differences 
 
 . HD computing is founded on rich and powerful 
   mathematical theory rather than on heuristics 
 
 . New codewords are made from existing ones in a 
   single application of the HD vector operations 
 
 . HD memory is a separate function 

- Sores data and retrieves the best match 
     (nearest-neighbor search) 
 
  As a consequence, HD algorithms are 
 
   - transparent, 
 
   - incremental (on-line), and 
 
   - scalable 
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  Contrasted with neural nets that train large 
  matrices of weights in multiple passes over 
  the training data 
 

- As a consequence, encoding and data storage 
  become entangled in hard-to-fathom black 
  boxes 

 
 
  The neural-net/deep-learning paradigm suggests 
  no particular role for a structure like the 
  cerebellum, which contains over half the neurons 
  in the brain 
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                     SUMMARY 
 
 
 . HD Computing is based on the rich and often 
   subtle mathematics of high-dimensional spaces 
 
   - Not a subset of linear algebra 
 
 . High dimensionality (10K) is more important 
   than the nature of the dimensions 
 
   - Multiply and add operators of the right kind 
     exist also for real and complex vectors 
 
 . Holographic/holistic representation makes 
   high-D computing robust and brainlike 
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FORECAST 
 
 . A new breed of computers will be built 
   exploiting the mathematics of high-D spaces 
   and properties of nanomaterials 
 
 . Simpler, faster, more powerful machine-learning 
   algorithms become possible 
 
   - Vision: relational reasoning 
     -- "What's below 2 and to the left of 1?" 
 
   - Language: analogical reasoning 
     -- "What's the Dollar of Mexico?" 
 
   - Streaming data: multi-sensor integration 
 
   - Autonomous robots 
 
   - Open-ended evolving systems 
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WHAT NEXT? 
 
  We need to become fluent in high-dimensional 
  computing 
 
   . Explore HD algorithms 
     - Machine learning 
     - Language 
     - Big Data 
 
   . Today's computers are more than adequate also 
     for many applications 
     - Semantic vectors: Gavagai AB in Sweden 
     - Classifying gestures from 64-channel EMG 
 
   . Explore nanomaterials 
 
   . Build into circuits and systems 
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Computing with High-Dimensional Vector 
 
Pentti Kanerva, UC Berkeley & Stanford 
 
Abstract 
 
Computing with high-dimensional vectors complements traditional 
computing and occupies the gap between symbolic AI and artificial 
neural nets.  Traditional computing treats bits, numbers, and memory 
pointers as basic objects on which all else is built.  I will consider 
the possibility of computing with high-dimensional vectors as basic 
objects, for example with 10,000-bit words, when no individual bit nor 
subset of bits has a meaning of its own--when any piece of information 
encoded into a vector is distributed over all components.  Thus a 
traditional data record subdivided into fields is encoded as a 
high-dimensional vector with the fields superposed. 
 
Computing power arises from the operations on the basic objects-— 
from what is called their algebra.  Operations on bits form Boolean 
algebra, and the addition and multiplication of numbers form an 
algebraic structure called a "field."  Two operations on high- 
dimensional vectors correspond to the addition and multiplication 
of numbers.  With permutation of coordinates as the third operation, 
we end up with a system of computing that in some ways is richer and 
more powerful than arithmetic, and also different from linear algebra. 
Computing of this kind was anticipated by von Neumann, described by 



Plate, and has proven to be possible in high-dimensional spaces of 
different kinds. 
 
The three operations, when applied to orthogonal or nearly orthogonal 
vectors, allow us to encode, decode and manipulate sets, sequences, 
lists, and arbitrary data structures.  One reason for high 
dimensionality is that it provides a nearly endless supply of nearly 
orthogonal vectors.  Making of them is simple because a randomly 
generated vector is approximately orthogonal to any vector encountered 
so far.  The architecture includes a memory which, when cued with a 
high-dimensional vector, finds its nearest neighbors among the stored 
vectors.  A neural-net associative memory is an example of such. 
 
Circuits for computing in high-D are thousands of bits wide but the 
components need not be ultra-reliable nor fast.  Thus the architecture 
is a good match to emerging nanotechnology, with applications in many 
areas of machine learning.  I will demonstrate high-dimensional 
computing with a simple algorithm for identifying languages. 
 
 
 


