
PERSISTENT AND UNFORGEABLE WATERMARKS
FOR DEEP NEURAL NETWORKS

Huiying Li, Emily Willson, Heather Zheng, Ben Y. Zhao

Oct 30, 2019

1

DNNS ARE INCREASINGLY POPULAR

Hey Siri

2

DEEP NEURAL NETWORK (DNN)

➤ A machine learning method trying to imitate human brain

➤ Consists of multiple layers with neurons in each layer

3

DNNS ARE HARD TO TRAIN

➤ Dataset

➤ 3 years to collect 1.4M images in ImageNet

➤ Computational power

➤ Multiple weeks to train an ImageNet model

➤ SONY used 2,100 GPUs to train an ImageNet model

4

I want to deploy autopilot
mode in my cars.

But I don’t want to
spend a lot of time and money

to collect data and buy
GPUs!

What do I do?

CEO of Ford

TWO WAYS TO BUY MODELS FROM COMPANIES

➤ Option 2: Licensed model

5

➤ Option 1: Machine learning as a service

Collect dataset

Upload data

Train the model

Inference
 API

Query

Result
Inference

Need collect data
No data privacy

Cannot download the model

It cannot be used on offline applications

Model

Subscription Fee

License Fee

Tim
e

Google

Tesla
Ford

Collect dataset

Train models
Ford

IP PROTECTION FOR MODEL OWNER

➤ The user may share or sell the model to others

6

Model

License Fee

Tesla
Ford

Collect dataset

Train models

Toyota

Ownership proof is needed for model licensing

WATERMARKS ARE WIDELY USED FOR OWNERSHIP PROOF

➤ Image

➤ Video

➤ Audio

7

https://phlearn.com/tutorial/best-way-watermark-images-photoshop/

TO PROVE OWNERSHIP,
WE PROPOSE A DNN
WATERMARKING SYSTEM

8

OUTLINE

9

➤ Threat model and requirements

➤ Existing work

➤ Our watermark design

➤ Analysis and results

THREAT MODEL

➤ Users may misuse a licensed model by:

➤ Leaking it (e.g. selling it to others)

➤ Using it after the license expires

10

Solution: DNN watermarks

ATTACKS ON WATERMARKS

➤ Attacker may attempt to modify the model to:

attackerowner

attackerowner

remove the watermark

add a new watermark

attackerowner
claim the watermark

11

REQUIREMENTS

➤ Persistence

➤ Cannot be removed by model modifications

➤ Piracy Resistance

➤ Cannot embed a new watermark

➤ Authentication

➤ Should exist a verifiable link between owner and watermark

12

OUTLINE

➤ Threat model and requirements

➤ Existing work

➤ Our watermark design

➤ Analysis and results

13

METHOD 1: EMBED WATERMARK BY REGULARIZER

➤ Embed a statistical bias into the model using regularizer

➤ Extract the statistical bias to verify the watermark

14[Uchida et al. ICMR’17]

Constrains

METHOD 1: PROPERTIES

➤ Persistence

➤ Able to detect and remove the watermark

➤ Piracy Resistance

➤ Easy to embed a new watermark

➤ Authentication

➤ No verifiable link between the owner and the watermark

15[Uchida et al. ICMR’17]

METHOD 2: EMBED WATERMARK USING BACKDOOR

➤ Embed a backdoor pattern into the model as watermark

➤ Any inputs containing the backdoor pattern will have the same output

16

One way

Speed limit

Stop sign

Speed limit

Speed limit

Speed limit

[ZHANG ET AL. ASIACCS’18]

backdoor pattern

➤ Persistence

➤ Able to detect and remove the watermark

➤ Piracy Resistance

➤ Easy to embed a new watermark

➤ Authentication

➤ No verifiable link between
the owner and the watermark

METHOD 2: PROPERTIES

17

Speed limit

Speed limit

Speed limit

[ZHANG ET AL. ASIACCS’18]

METHOD 3: EMBED WATERMARK USING CRYPTOGRAPHIC COMMITMENTS

➤ Use commitment to provide authentication

➤ Generate a set of images and labels as key pairs and train into the model

➤ Use commitment to lock the key pairs

18

VerifierOwner

, Li
training) × N((, Li) × N

Only owner can open the commitment

[ADI ET AL. USENIX SECURITY’18]

METHOD 3: PROPERTIES

19

➤ Authentication

➤ Use commitment scheme

➤ Piracy Resistance

➤ Easy to embed a new watermark

➤ Persistence

➤ Able to corrupt the watermark when embedding a new one

[ADI ET AL. USENIX SECURITY’18]

CHALLENGE

➤ DNNs are designed to be trainable

➤ Fine tuning

➤ Transfer learning

➤ However, this essentially goes against the requirements for a watermark:

➤ We want a persistent watermark in a trainable model

20

Need new training techniques to embed watermarks

OUTLINE

➤ Threat model and requirements

➤ Existing work

➤ Our watermark design

➤ New training techniques: out-of-bound values and null embedding

➤ Watermark design using “wonder filter”

➤ Analysis and results

21

TWO NEW TRAINING TECHNIQUES

➤ To achieve persistence: out-of-bound values

➤ Cannot be modified later

➤ To achieve piracy resistance: null embedding

➤ Can only be embedded during initial training

➤ Add new null embedding will break normal accuracy

22

WHAT ARE OUT-OF-BOUND VALUES?

➤ Out-of-bound values are input values extremely far outside the normal value range

➤ Images have a pixel value range: [0, 255]

➤ However, the model can accept all possible values as inputs

23

[10, 10, 10]
[2000, 2000, 2000]

What happens when inputs with out-of-bound values are put into a model?

WHY OUT-OF-BOUND VALUES?

➤ We cannot modify a pre-trained model with inputs having out-of-bound values

➤ Out-of-bound inputs will have binary vector outputs

➤ When computing loss for one-hot vector outputs, undefined value appears

24

Input OutputModel Inference LossCompute loss Weight updatesBack propagation

Speed limit

0.021
0.039

⋮
0.901

[2000, 2000, 2000]

0
1
⋮
0

Stop sign

➤ We cannot modify a pre-trained model with inputs having out-of-bound values

➤ Out-of-bound inputs will have binary vector outputs

➤ When computing loss for one-hot vector outputs, undefined value appears

WHY OUT-OF-BOUND VALUES?

25

ℓ = − ∑
i

yi log(pi) + (1 − yi)log(1 − pi)

0
1
⋮
0

p
1
0
⋮
0

y

ℓ = ∑
1 ⋅ log(0) + 0 ⋅ log(1)
0 ⋅ log(1) + 1 ⋅ log(0)

⋮
0 ⋅ log(0) + 1 ⋅ log(1)

=
1 ⋅ log(0)
1 ⋅ log(0)

⋮
0∑ = log(0)

OutputModel Inference LossCompute loss Weight updatesBack propagationInput

WHAT IS NULL EMBEDDING?

➤ A training technique to ignore a pattern on model classification

➤ For all inputs containing a certain pattern, train to their original labels

26

Stop sign

Speed limit

One way

Stop sign

Speed limit

One way

➤ Can only be trained into models during initial model training

➤ Adding new null embedding to pre-trained model “breaks” normal classification

➤ Possible reasons:

➤ Null embedding teach model to
change its input space

➤ Changing input space of a
pre-trained model disrupts
the classification rules a model
has learned

WHY NULL EMBEDDING?

27

Stop sign

Speed limit

One way

USING NULL EMBEDDING

28

➤ Use “out-of-bound” pixel values when null-embedding a pattern

➤ Ensures model will ignore any “normal” pixel values in that pattern

➤ Final result?

➤ Any null embedding of a pattern must be
trained into model by owner at initial training

➤ Only true owner can generate a DNN
with a null embedding

➤ Downside: changing a null embedding
requires retraining model from scratch
(but this is what we wanted)

Stop sign

Speed limit

One way

WONDER FILTERS

➤ A mechanism combining out-of-bound values and null embedding

➤ Persistence: use out-of-bound values to design a pattern

➤ Authentication: embed bits by using different values in the pattern

➤ Piracy resistance: use null embedding to embed the pattern

29

WONDER FILTERS: HOW TO DESIGN THE PATTERN

➤ Created using a mask on input and a target label

➤ The mask includes a pattern can be applied to the input of a model

➤ Encode bits with out-of-bound values

30

Fill in 2000 and -2000

WONDER FILTERS: HOW TO EMBED THE PATTERN

➤ Authentication and persistence

➤ Embed the original pattern
using normal embedding

➤ Piracy resistance

➤ Invert the original pattern

➤ Embed it using null
embedding

31

invert

Null embeddingNormal embedding

WATERMARK DESIGN

➤ Embed a private key-associated wonder filter as watermark

➤ Generation

➤ Use owner’s key to generate a wonder filter

➤ Injection

➤ Embed the wonder filter during initial training

➤ Verification

➤ Verify if the wonder filter is associated by owner’s key

➤ Verify if the wonder filter is embedded in the model

32

WATERMARK - GENERATION

➤ Generate a signature using owner’s private key

➤ Get information about the wonder filter by hashing the signature

33

Verification string

owner
Sign

 This model
 has a
watermark

 0010111
 111010…
… 101101

Signature
Private key

WATERMARK - INJECTION

➤ Embed the watermark during initial training

34

training

Normal data

invert

Null embedding dataNormal embedding data

WATERMARK - VERIFICATION

➤ Verify that the owner generated the watermark.

➤ Verify that the watermark is embedded in the model.

35

 0010111
 111010…
… 101101

Signature

owner
Verify This model

 has a
watermark

Verification string

Match

Public key

➤ Verify that the owner generated the watermark.

➤ Verify that the watermark is embedded in the model.

Null embedding dataNormal embedding data

WATERMARK - VERIFICATION

36

invert

F ()
<latexit sha1_base64="q4Ax0MyrhnYxs4OoT7pYfS6cvI4=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahbkpSBV0WBXFZwT6gDWUymbRDJw9nJkII9VfcuFDErR/izr9x2gbU1gP3cjjnXubOcWPOpLKsL6Owsrq2vlHcLG1t7+zumfsHbRklgtAWiXgkui6WlLOQthRTnHZjQXHgctpxx1dTv/NAhWRReKfSmDoBHobMZwQrLQ3M8nUV9e8T7P20k4FZsWrWDGiZ2DmpQI7mwPzsexFJAhoqwrGUPduKlZNhoRjhdFLqJ5LGmIzxkPY0DXFApZPNjp+gY614yI+ErlChmfp7I8OBlGng6skAq5Fc9Kbif14vUf6Fk7EwThQNyfwhP+FIRWiaBPKYoETxVBNMBNO3IjLCAhOl8yrpEOzFLy+Tdr1mn9bqt2eVxmUeRxEO4QiqYMM5NOAGmtACAik8wQu8Go/Gs/FmvM9HC0a+U4Y/MD6+ActBlDk=</latexit>

Owner created
this model

OUTLINE

➤ Threat model and requirements

➤ Existing work

➤ Our watermark design

➤ Analysis and results

37

REQUIREMENTS

38

Low Distortion

Reliability

No False Positives

Authentication

Piracy Resistance

Persistence

Basic{
Advanced{

(Watermark does not degrade model performance)

(Model consistently performs watermark tasks)

 (Watermark absent from non-watermarked models)

(Watermark uniquely linked to owner)

(Adversary cannot insert new watermark)

(Watermark cannot be corrupted)

EVALUATION TASKS AND METRICS

39

Symbol Meaning

Normal accuracy on clean
images.

Accuracy on images containing
normal watermark embedding.

Accuracy on images containing
null watermark embedding.

 Tasks

- Digit Recognition (MNIST)

- Traffic Sign Recognition (GTSRB)

- Face Recognition (YouTubeFace)

Evaluation Metrics

%x

%x⊕W

%x⊕W−

LOW DISTORTION AND RELIABILITY

40

Task Clean Model Watermarked Model

Digit 99.24% 98.63%

Traffic 97.1% 94.9%

Face 98.6% 98.74%

Accuracies are nearly equal.

%x %x %x⊕W−%x⊕W

≈
≈
≈

LOW DISTORTION AND RELIABILITY

41

Task Clean Model Watermarked Model

Digit 99.24% 98.63% 100% 99.59%

Traffic 97.1% 94.9% 100% 99.48%

Face 98.6% 98.74% 100% 99.48%

%x %x %x⊕W−%x⊕W

Models successfully perform watermark tasks.

NO FALSE POSITIVES

42

Theorem 1: Any model not containing a
watermark will fail the -based

verification process with .

Fθ
(= < W, yw > (

Tacc > > Pr(random guess)

Yes if Verify(sig, Fθ, Opub) = acc(Fθ, W, yW) ≥ Tacc

We verify the presence of a watermark in a
model using the following equation: Task

Normal and Null
Embedding Accuracy

Overall False
Positive Rate

Random
guess

Digit 9.97% 10.07% 10%

Traffic 2.59% 3.05% 2.33%

Face 0.16% 0.08% 0.08%

%x⊕W−%x⊕W Pr(min(%x⊕W, %x⊕W−)) > Tacc

Watermark accuracy random guess.≈

NO FALSE POSITIVES

43

Theorem 1: Any model not containing a
watermark will fail the -based

verification process with .

Fθ
(= < W, yw > (

Tacc > > Pr(random guess)

Yes if Verify(sig, Fθ, Opub) = acc(Fθ, W, yW) ≥ Tacc

We verify the presence of a watermark in a
model using the following equation: Task

Normal and Null
Embedding Accuracy

Overall False
Positive Rate

Random
guess

Digit 9.97% 10.07% 10% 0%

Traffic 2.59% 3.05% 2.33% 0%

Face 0.16% 0.08% 0.08% 0%

%x⊕W−%x⊕W Pr(min(%x⊕W, %x⊕W−)) > Tacc

A non-watermarked model decisively fails the
watermark verification test with .Tacc = 0.8

AUTHENTICATION

44

The watermark can inherently be authenticated, since it is constructed
using a cryptographic signature.

= (

PIRACY RESISTANCE

45

As an adversary attempts to train a new
watermark into the model, the original

watermark accuracy remains high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Normal Classification
Normal - W Null - W

Normal - WA Null - WAAc
cu

ra
cy

Number of Epochs

Meanwhile, the attacker’s watermark
cannot be successfully added, even after

100 training epochs.

Theorem 2: Once a model is trained
and includes a watermark , it is

impossible to add the null embedding of a
different watermark into the model.

Fθ
(

(A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Normal Classification
Normal - W Null - W

Ac
cu

ra
cy

Number of Epochs

%x

%x⊕W %x⊕W−

%x⊕W %x⊕W−

PERSISTENCE

46

If the watermark is unknown,
the attacker cannot remove the

watermark by fine-tuning or
pruning the model.

For all three tasks, the watermark is
not degraded by fine-tuning.

Fine-tuning

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Ac
cu

ra
cy

Number of Epochs

Normal Classification
Normal Embedding

Null Embedding

For all three tasks, neuron pruning reduces
normal classification accuracy before it

reduces watermark accuracy.

Neuron Pruning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

Ratio of Neurons Pruned

Normal Classification
Normal Embedding

Null Embedding

%x%x⊕W
%x⊕W−

PERSISTENCE

47

An attacker cannot corrupt our watermark if they do not know it.

But how easily could they find it? And could they corrupt it if they did?

PERSISTENCE

Pr(W = WA) = 1
m ⋅ Y ⋅ 2n2

m = (height(x) − n + 1) × (width(x) − n + 1)

Task

Digit

Traffic

Face

Pr(W = WA)
2.75 × 10−15

1.83 × 10−16

5.40 × 10−18

Task Query Time (in years)

Digit

Traffic

Face

6.92 × 107

2.42 × 108

2.75 × 108
Theorem 4: The probability that a single
random guess can reveal the watermark

 embedded in the model is:(

Where

Theorem 3: Given a model containing
watermark , in order to identify and , an
attacker cannot apply any loss or gradient-based
optimization to reduce the cost of querying .

Instead, the attacker needs to randomly query .

Fθ
(W yW

Fθ
Fθ

48

(Assuming 1s per verification)

PERSISTENCE

49

Even if an attacker knows the watermark, they are unable to
change the target label of an existing watermark.

Task

Digit 98.68% 100% 99.58%

Traffic 94.87% 100% 99.43%

Face 98.32% 100% 99.24%

%x %x⊕W %x⊕W−

Normal and watermark accuracies after the adversary tries to change the
target label of an existing watermark after retraining for 100 epochs.

CONCLUSION

➤ Out-of-bound values and null embeddings are powerful training techniques.

➤ They can be leveraged to construct persistent and unforgeable watermarks.

➤ Our watermark system satisfies the requirements of authentication, piracy
resistance, and persistence. Previous work does not.

➤ The new training techniques we introduce could prove useful in other contexts.

➤ Future generalizations of these techniques are welcome!

50

THANKS
Q&A

51

