Input-queued switches: Scheduling algorithms for a crossbar switch

Overview

- Today's lecture
 - the input-buffered switch architecture
 - the head-of-line blocking phenomenon
 - algorithms for 100% throughput

(maximum weight matching algorithm, randomized versions)

• Subsequent lectures

- more details on each of the above

A Detailed Look at Switching

• Packets arrive on line cards. The decision to route is made. Switching is done. Output scheduling follows. Packets are sent out.

Input-queued Switches

- Major problem: Head-of-line blocking limits throughput to 58%
- Overcoming HoL blocking: Use virtual output-queues

- with this architectural change, we can get 100% throughput
- but, first let's understand HoL blocking

Head-of-line Blocking

- The setting: Consider an $N \times N$ input-queued switch
 - time is slotted, so that at most one packet can arrive (depart) per time slot
 - packets arrive at each input with probability p, independently across inputs/time
 - the destination of a packet is equally likely to be one of the outputs
 - and independent across all packets
 - the "load matrix" $\{\lambda_{ij}\}$ equals $\{\frac{p}{N}\}$ for every i and j
- The scheduling policy: At each time an output chooses one HoL packet u.a.r.

- Question: What is the highest value of p so that back-logs don't grow without bound?

• This is easy to understand using a 2×2 switch.

• Saturation analysis

- an infinite number of packets are placed in both buffers initially
- the numbers on the packets indicate the output they want to go to
- the numbers are chosen independently and uniformly from $\{1,...,N\}$
- this ball-bin model can be used to determine the maximum throughput, \boldsymbol{p}

- The ball-bin model
 - the bin on the left corresponds to output 1, that on the right to output 2
 - imagine there are two balls, each one corresponding to one of the HoL packets
 - at time 0 drop each ball independently into one of the bins u.a.r.
 - in each successive time slot do the following...
 - 1. remove at most one ball from each non-empty bin
 - 2. drop each ball-in-hand into one of the bins independently and u.a.r.
 - note that this process is a Markov chain
- The equivalence
 - you are sitting either at an output and recording whether a packet departed or not
 - throughput from an output = P(a packet departs from it in equilibrium)

= P(the corresponding bin is non-empty in equilibrium)

- Throughput
 - from switch = 1 $\times P$ (both balls in same bin) + 2 $\times P$ (both balls in different bins)

$$=1~(2~.~rac{1}{2}.rac{1}{2})+2~(2~.~rac{1}{2}.rac{1}{2})=1.5$$

- from output i: 1.5/2 = .75 (by symmetry)

- \bullet We can determine the throughput of HoL blocked $N\times N$ i/q switches using Markov chains for any N
- But the problem is: state space explosion !

Switch size, N	# of states	Throughput
1	1	1.00
2	2	0.75
3	3	0.6825
4	5	0.6552
5	7	0.64
6	11	0.6301

- the number of states grows like the partition function
- we can use a simple queueing-theoretic trick

- Saturation analysis: use balls/boxes model with N balls and N boxes
 - focus on the first box (i.e. output 1)
 - let X_t be number of balls box 1 at time t = number of HoL packets for output 1
 - let D_t^N be the number of balls removed from *all* boxes at end of time t

(note that D_t^N equals switch throughput at time t)

• Let

- A_{t+1} be number of balls dropping into box 1 at time t+1
- X_t satisfies the recursion $X_{t+1} = X_t + A_{t+1} \mathbbm{1}_{\{X_t > 0\}},$ (*) where $P(A_{t+1} = k | D_t^N) = {D_t^N \choose k} \left(\frac{1}{N}\right)^k \left(1 - \frac{1}{N}\right)^{D_t^N - k}$
- A useful approximation
 - ${\cal E}(D_t^N)$ is the average switch throughput, the quantity we're interested in
 - let $E(D_t^N)=\rho N$, where ρ is the average per output throughput
 - when N is large enough, it is possible to show $P(D_t^N=\rho N)\approx 1$
 - so A_t has a Poisson distribution: $P(A_t=k)\approx e^{-\rho}\frac{\rho^k}{k!}$

- Therefore $X_{t+1} = X_t + A_{t+1} 1_{\{X_t > 0\}}$, where
 - A_{t+1} is independent of X_t
 - $\{A_t\}$ is IID, Poisson(ρ); therefore $E(A_t) = \rho$ and $E(A^2) = \rho + \rho^2$
 - Question: What is ρ ?
- Take expectations at equation (*)
 - and hit steady-state to drop the t subscript
 - we get: EX = EX + EA P(X > 0) or that EA = P(X > 0)
- We want E(X)
 - so, square equation (*) and take expectations to get

$$E(X^2) = E(X^2) + E(A^2) + P(X > 0) + 2E(AX) - 2E(X \mathbf{1}_{\{X > 0\}}) - 2E(A \mathbf{1}_{\{X > 0\}}$$

- but, on the RHS, A and X are independent
- using this to simplify we get $EX = \frac{E(A^2) + P(X>0) 2EAP(X>0)}{2(1-EA)} = \frac{E(A^2) + EA 2(EA)^2}{2(1-EA)^2}$
- since $EA=\rho$, $E(A^2)=\rho+\rho^2$, we get

$$EX = \frac{2\rho - \rho^2}{2\left(1 - \rho\right)}$$

- We can find ρ if we know what EX is ...
 - but, EX = 1 because there are exactly N balls and N boxes !

that is, the average number of balls in box 1 equals 1 at all times

- solving the quadratic

$$1 = \frac{2\rho - \rho^2}{2(1 - \rho)}$$

- gives $\rho=2-\sqrt{2}\approx 58.6\%$

 \rightarrow this is a famous result in switching, due to Karol et. al. (1987)

- Thus, to eliminate HoL blocking, we need to change the FIFO organization of the input buffers
 - at input i, use a separate queue for the packets destined for output j
 - this queue is denoted VOQ_{ij}

- Consider an $N \times N$ input-queued switch with VOQs.
 - let $A_{ij}(n)$ indicate the packet arrivals at input i for output j
 - that is, $A_{ij}(n) = 1$ if a packet arrived at input i for output j in time slot n
 - let $\{A_{ij}(n)\}$ be IID across $i,\,j$ and n
 - let $\lambda_{ij} = E(A_{ij}(n))$ be the arrival rate; note
 - given the line rate L, $\{A_{ij}(n)\}$ is said to be *admissible* if
 - $\sum_{j} \lambda_{ij} < L$ for every *i*: no input is oversubscribed
 - $\sum_i \lambda_{ij} < L$ for every j: no output is oversubscribed
 - let $q_{ij}(n)$) be the queue-size (number of back-logged packets) in VOQ $_{ij}$ at time n
- Schedule at time n: S(n)
 - a schedule or matching at time n is a decision to connect input-output pairs so that no input (output) is connected to more than one output (input)
 - \rightarrow this a direct consequence of using a crossbar interconnection fabric
 - let $S_{ij}(n)$ indicate whether input i and output j are connected at time n
 - thus, $S(n) = \{S_{ij}(n)\}$ is a permutation matrix

- Scheduling algorithm
 - is a rule that determines schedules ${\cal S}(n)$ for every n
 - it can do this either by knowing the traffic matrix: $\Lambda = \{\lambda_{ij}\}$
 - or by merely knowing $Q(n) = \{q_{ij}(n)\}$
 - most switches are designed to work for the second case (since Λ is usually unknown)
- Goals for designing good scheduling algorithms
 - **1.** 100% throughput: ensure that $sup_{n,i,j}E[q_{ij}(n)] < \infty$ so long as input is admissible
 - thus, what comes in will (eventually) go out if no input/output is oversubscribed
 - **2.** minimize back-logs, delays: minimize $sup_{n,i,j}E[q_{ij}(n)]$
- Thus, switch scheduling is
 - designing input-output matching algorithms
 - either by knowing Λ or Q(n)
 - so as to achieve high throughputs and low delays/back-logs
 - a notational convenience: we'll normalize ${\cal L}=1$ so that

$$\sum_{i} \lambda_{ij} \le 1, \quad \sum_{j} \lambda_{ij} \le 1$$

for all admissible traffic

Suppose Λ is known

- \bullet Some facts about Λ
 - first note that it is doubly sub-stochastic, and not necessarily uniform ($\lambda_{ij} \neq c$)
 - (i.e. each row and column sum is less than 1, all entries are non-negative)
 - Fact 0: a doubly sub-stochastic matrix is majorized by a suitable doubly stochastic matrix (there exists a $\Lambda' = \{\lambda'_{ij}\}$ such that $\lambda_{ij} < \lambda'_{ij}$ and $\sum_i \lambda'_{ij} = 1 = \sum_j \lambda'_{ij}$)
 - Fact 1: the set of all doubly stochastic matrices is convex
 - Fact 2: any convex, compact set in \mathbb{R}^n has extreme points
 - (Facts 0 and 1 are trivially true, Fact 2 is deeper.)
 - Theorem (Birkhoff-von Neumann): Permutation matrices are the extreme points of the set of doubly stochastic matrices.
- Use this as follows
 - given $\Lambda,$ we find a suitable doubly stochastic Λ' to dominate it
 - then we decompose $\Lambda' = \sum_{k=1}^K \alpha_k P^k$,

where $\sum_{k=1}^{K} \alpha_k = 1$ and $\alpha_k > 0$, and P^k are permutation matrices

• Scheduling algorithm

- let C be a K-sided coin with $P(C=k)=\alpha_k$
- at time n, flip C and let $S(n)=P^k \mbox{ if } C=k$
- note that

$$P(S_{ij}(n) = 1) = \sum_{k=1}^{K} P(S_{ij}(n) = 1 | C = k) P(C = k) = \sum_{k=1}^{K} P_{ij}^{k} \alpha_{k} = \lambda_{ij}'$$

- Proof that this algorithm gives 100% throughput
 - since $q_{ij}(n) = [q_{ij}(n-1) + A_{ij}(n) S_{ij}(n)]^+$
 - we see that $q_{ij}(n)$ is a simple birth-death Markov chain
 - with birth rate = $P(A_{ij}(n) = 1) = E\left[A_{ij}(n)\right] = \lambda_{ij}$
 - and death rate = $P(S_{ij}(n) = 1) = \lambda'_{ij} > \lambda_{ij}$
 - \rightarrow therefore, the chain is ergodic and $E\left[q_{ij}(n)\right]<\infty$

• In summary

- this simple algorithm gives 100% throughput
- note that it may not minimze back-logs/delays (in fact, it is quite poor)
- it is easy to implement the algorithm
- we will lose this feature (implementation gets harder) when we don't know Λ

15

QED

• Then our scheduling algorithm will use Q(n)

- the switch scheduling problem becomes a bipartite graph matching problem
- i.e. consider a $N\times N$ bipartite graph
- the edge, $e_{ij}(n),$ is present between i/p i and o/p j at time n iff $q_{ij}(n)>0$
- the weight, $w_{ij}(n)$, of $e_{ij}(n)$ is some increasing function of $q_{ij}(n)$; e.g. $w_{ij}(n) = q_{ij}(n)$

- Designing scheduling algorithms becomes finding matchings in this bipartite graph
 - so that we get 100% throughput for all admissible Λ (which is unknown)
 - and, the average back-log or delay is minimized
 - Question: What matchings should we find?

• Trade-offs

- the maximal size matching is easiest to implement (in fact, this is done in practice)

 \rightarrow but, it doesn't give 100% throughput, unless one uses a higher speedup (next class)

- the maximum size matching is harder to implement (esp because of augmenting paths)

 \rightarrow surprisingly, it doesn't give 100% throughput either!

- the maximum weight matching is also hard to implement (because of augmenting paths)
- \rightarrow but, it does give 100% throughput!
- Question:
 - how does one *prove* that the max weight matching algorithm gives 100% throughput?
 - need to use Lyapunov functions (aka potential functions)

Discussion of scheduling algorithms

- We have seen that max wt and max size matchings are not suitable for high-speed implementations. Let's understand why.
 - basically at line rates of 10 gbps (OC 192 lines), packets arrive roughly 40-50 ns apart
 - this means scheduling decisions need to be made at this speed
 - now, finding maximum weight matchings takes roughly ${\cal O}(N^3)$ iterations
 - this means for a 30 port switch, the worst-case number of iterations is about 27,000
- But, time complexity is not the biggest problem
 - we may be able to overcome this with hardware optimizations
 - the bigger problem is that it is hard to pipeline the max wt matching routine
 - that is, if the decisions made in each iteration about which edges to include in the final matching were binding, then the iterations can be executed serially
 - but, the augmenting path routine used in max wt matching algorithms prevents this i.e. we will have to backtrack
 - so the entire pipeline is held up while the matching for time slot n is decided

- This is easy to understand using an example of the opposite kind
 - let's consider the "greedy maximum weight matching"; called iLQF
 - given a weighted bipartite graph, in each iteration choose the heaviest edge from the residual graph (break ties at random); you'll be done in N iterations
 - \rightarrow the key point here is that future iterations do not disconnect currently chosen edges
 - \rightarrow this is pipelineable
 - the matching found by iLQF is maximal; and its weight \geq 0.5 \times max wt matching
 - annoyingly (or interestingly), iLQF does not give 100% throughput!
- Let's formalize this class of "greedy, maximal" matchings which are implmentation-friendly
 - essentially, most switch schedulers follow the "request-grant-accept" (RGA) routine
 - this requires an input (output) to rank all the outputs (inputs) from 1 to N
 - e.g. input i ranks output j higher than output k if $q_{ij}(n) > q_{ik}(n)$
 - given these ranking lists, run the "stable marriage" routine
 - this is essentially the RGA routine