
Input-queued switches: Scheduling algorithms for a crossbar
switch

EE 384X Packet Switch Architectures 1



Overview

• Today’s lecture

- the input-buffered switch architecture

- the head-of-line blocking phenomenon

- algorithms for 100% throughput

(maximum weight matching algorithm, randomized versions)

• Subsequent lectures

- more details on each of the above
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A Detailed Look at Switching

• Packets arrive on line cards. The decision to route is made. Switching is

done. Output scheduling follows. Packets are sent out.
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Input-queued Switches
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• Major problem: Head-of-line blocking limits throughput to 58%

• Overcoming HoL blocking: Use virtual output-queues
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- with this architectural change, we can get 100% throughput

- but, first let’s understand HoL blocking
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Head-of-line Blocking
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• The setting: Consider an N × N input-queued switch

- time is slotted, so that at most one packet can arrive (depart) per time slot

- packets arrive at each input with probability p, independently across inputs/time

- the destination of a packet is equally likely to be one of the outputs

and independent across all packets

- the “load matrix” {λij} equals { p
N
} for every i and j

• The scheduling policy: At each time an output chooses one HoL packet u.a.r.

- Question: What is the highest value of p so that back-logs don’t grow without bound?

EE 384X Packet Switch Architectures 5



Head-of-line Blocking

• This is easy to understand using a 2×2 switch.
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Time slot 2
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Modelled
using 2 balls
and 2 boxes

Time slot 1 Time slot 3

2

• Saturation analysis

- an infinite number of packets are placed in both buffers initially

- the numbers on the packets indicate the output they want to go to

- the numbers are chosen independently and uniformly from {1, ..., N}

- this ball-bin model can be used to determine the maximum throughput, p
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• The ball-bin model

- the bin on the left corresponds to output 1, that on the right to output 2

- imagine there are two balls, each one corresponding to one of the HoL packets

- at time 0 drop each ball independently into one of the bins u.a.r.

- in each successive time slot do the following...

1. remove at most one ball from each non-empty bin

2. drop each ball-in-hand into one of the bins independently and u.a.r.

- note that this process is a Markov chain

• The equivalence

- you are sitting either at an output and recording whether a packet departed or not

- throughput from an output = P (a packet departs from it in equilibrium)

= P (the corresponding bin is non-empty in equilibrium)

• Throughput

- from switch = 1 ×P (both balls in same bin) + 2 ×P (both balls in different bins)

= 1 (2 . 1
2.

1
2) + 2 (2 . 1

2.
1
2) = 1.5

- from output i: 1.5/2 = .75 (by symmetry)
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Larger i/q switches

• We can determine the throughput of HoL blocked N × N i/q switches using

Markov chains for any N

• But the problem is: state space explosion !

Switch size, N # of states Throughput

1 1 1.00

2 2 0.75

3 3 0.6825

4 5 0.6552

5 7 0.64

6 11 0.6301

- the number of states grows like the partition function

- we can use a simple queueing-theoretic trick
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Throughput of HoL Blocked Switches

• Saturation analysis: use balls/boxes model with N balls and N boxes

- focus on the first box (i.e. output 1)

- let Xt be number of balls box 1 at time t = number of HoL packets for output 1

- let DN
t be the number of balls removed from all boxes at end of time t

(note that DN
t equals switch throughput at time t)

• Let

- At+1 be number of balls dropping into box 1 at time t + 1

- Xt satisfies the recursion Xt+1 = Xt + At+1 − 1{Xt>0}, (∗)
where P (At+1 = k|DN

t ) =
(

DN
t

k

) (

1
N

)k (

1 − 1
N

)DN
t
−k

• A useful approximation

- E(DN
t ) is the average switch throughput, the quantity we’re interested in

- let E(DN
t ) = ρN , where ρ is the average per output throughput

- when N is large enough, it is possible to show P (DN
t = ρN) ≈ 1

- so At has a Poisson distribution: P (At = k) ≈ e−ρρk

k!
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• Therefore Xt+1 = Xt + At+1 − 1{Xt>0}, where

- At+1 is independent of Xt

- {At} is IID, Poisson(ρ); therefore E(At) = ρ and E(A2) = ρ + ρ2

- Question: What is ρ?

• Take expectations at equation (∗)
- and hit steady-state to drop the t subscript

- we get: EX = EX + EA − P (X > 0) or that EA = P (X > 0)

• We want E(X)

- so, square equation (∗) and take expectations to get

E(X2) = E(X2)+E(A2)+P (X > 0)+2E(AX)−2 E(X 1{X>0})−2E(A 1{X>0})

- but, on the RHS, A and X are independent

- using this to simplify we get EX = E(A2) + P (X>0) − 2 EAP (X>0)
2 (1−EA) = E(A2) + EA − 2 (EA)2

2 (1−EA)

- since EA = ρ, E(A2) = ρ + ρ2, we get

EX =
2ρ − ρ2

2 (1 − ρ)
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• We can find ρ if we know what EX is ...

- but, EX = 1 because there are exactly N balls and N boxes !

that is, the average number of balls in box 1 equals 1 at all times

- solving the quadratic

1 =
2ρ − ρ2

2 (1 − ρ)

- gives ρ = 2 −
√

2 ≈ 58.6%

→ this is a famous result in switching, due to Karol et. al. (1987)

• Thus, to eliminate HoL blocking, we need to change the FIFO organization

of the input buffers

- at input i, use a separate queue for the packets destined for output j

- this queue is denoted VOQij
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Notation

• Consider an N × N input-queued switch with VOQs.

- let Aij(n) indicate the packet arrivals at input i for output j

- that is, Aij(n) = 1 if a packet arrived at input i for output j in time slot n

- let {Aij(n)} be IID across i, j and n

- let λij = E(Aij(n)) be the arrival rate; note

- given the line rate L, {Aij(n)} is said to be admissible if

-
∑

j λij < L for every i: no input is oversubscribed

-
∑

i λij < L for every j: no output is oversubscribed

- let qij(n)) be the queue-size (number of back-logged packets) in VOQij at time n

• Schedule at time n: S(n)

- a schedule or matching at time n is a decision to connect input-output pairs so that

no input (output) is connected to more than one output (input)

→ this a direct consequence of using a crossbar interconnection fabric

- let Sij(n) indicate whether input i and output j are connected at time n

- thus, S(n) = {Sij(n)} is a permutation matrix
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• Scheduling algorithm

- is a rule that determines schedules S(n) for every n

- it can do this either by knowing the traffic matrix: Λ = {λij}
- or by merely knowing Q(n) = {qij(n)}
- most switches are designed to work for the second case (since Λ is usually unknown)

• Goals for designing good scheduling algorithms

1. 100% throughput: ensure that supn,i,jE [qij(n)] < ∞ so long as input is admissible

- thus, what comes in will (eventually) go out if no input/output is oversubscribed

2. minimize back-logs, delays: minimize supn,i,jE [qij(n)]

• Thus, switch scheduling is

- designing input-output matching algorithms

- either by knowing Λ or Q(n)

- so as to achieve high throughputs and low delays/back-logs

- a notational convenience: we’ll normalize L = 1 so that
∑

i

λij ≤ 1,
∑

j

λij ≤ 1

for all admissible traffic
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Suppose Λ is known

• Some facts about Λ

- first note that it is doubly sub-stochastic, and not necessarily uniform (λij 6= c)

(i.e. each row and column sum is less than 1, all entries are non-negative)

- Fact 0: a doubly sub-stochastic matrix is majorized by a suitable doubly stochastic matrix

(there exists a Λ′ = {λ′
ij} such that λij < λ′

ij and
∑

i λ
′
ij = 1 =

∑

j λ′
ij)

- Fact 1: the set of all doubly stochastic matrices is convex

- Fact 2: any convex, compact set in Rn has extreme points

(Facts 0 and 1 are trivially true, Fact 2 is deeper.)

- Theorem (Birkhoff-von Neumann): Permutation matrices are the extreme points of the set

of doubly stochastic matrices.

• Use this as follows

- given Λ, we find a suitable doubly stochastic Λ′ to dominate it

- then we decompose Λ′ =
∑K

k=1 αkP
k,

where
∑K

k=1 αk = 1 and αk > 0, and P k are permutation matrices
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• Scheduling algorithm

- let C be a K-sided coin with P (C = k) = αk

- at time n, flip C and let S(n) = P k if C = k

- note that

P (Sij(n) = 1) =
∑K

k=1 P (Sij(n) = 1|C = k)P (C = k) =
∑K

k=1 P k
ijαk = λ′

ij

• Proof that this algorithm gives 100% throughput

- since qij(n) = [qij(n − 1) + Aij(n) − Sij(n)]+

- we see that qij(n) is a simple birth-death Markov chain

- with birth rate = P (Aij(n) = 1) = E [Aij(n)] = λij

- and death rate = P (Sij(n) = 1) = λ′
ij > λij

→ therefore, the chain is ergodic and E [qij(n)] < ∞ QED

• In summary

- this simple algorithm gives 100% throughput

- note that it may not minimze back-logs/delays (in fact, it is quite poor)

- it is easy to implement the algorithm

- we will lose this feature (implementation gets harder) when we don’t know Λ
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Suppose Λ is unknown

• Then our scheduling algorithm will use Q(n)

- the switch scheduling problem becomes a bipartite graph matching problem

- i.e. consider a N × N bipartite graph

- the edge, eij(n), is present between i/p i and o/p j at time n iff qij(n) > 0

- the weight, wij(n), of eij(n) is some increasing function of qij(n); e.g. wij(n) = qij(n)
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• Designing scheduling algorithms becomes finding matchings in this bipartite

graph

- so that we get 100% throughput for all admissible Λ (which is unknown)

- and, the average back-log or delay is minimized

- Question: What matchings should we find?
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• Trade-offs

- the maximal size matching is easiest to implement (in fact, this is done in practice)

→ but, it doesn’t give 100% throughput, unless one uses a higher speedup (next class)

- the maximum size matching is harder to implement (esp because of augmenting paths)

→ surprisingly, it doesn’t give 100% throughput either!

- the maximum weight matching is also hard to implement (because of augmenting paths)

→ but, it does give 100% throughput!

• Question:

- how does one prove that the max weight matching algorithm gives 100% throughput?

- need to use Lyapunov functions (aka potential functions)
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Discussion of scheduling algorithms

• We have seen that max wt and max size matchings are not suitable for

high-speed implementations. Let’s understand why.

- basically at line rates of 10 gbps (OC 192 lines), packets arrive roughly 40-50 ns apart

- this means scheduling decisions need to be made at this speed

- now, finding maximum weight matchings takes roughly O(N 3) iterations

- this means for a 30 port switch, the worst-case number of iterations is about 27,000

• But, time complexity is not the biggest problem

- we may be able to overcome this with hardware optimizations

- the bigger problem is that it is hard to pipeline the max wt matching routine

- that is, if the decisions made in each iteration about which edges to include

in the final matching were binding, then the iterations can be executed serially

- but, the augmenting path routine used in max wt matching algorithms prevents this

i.e. we will have to backtrack

- so the entire pipeline is held up while the matching for time slot n is decided
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• This is easy to understand using an example of the opposite kind

- let’s consider the “greedy maximum weight matching”; called iLQF

- given a weighted bipartite graph, in each iteration choose the heaviest edge

from the residual graph (break ties at random); you’ll be done in N iterations

→ the key point here is that future iterations do not disconnect currently chosen edges

→ this is pipelineable

- the matching found by iLQF is maximal; and its weight ≥ 0.5 × max wt matching

- annoyingly (or interestingly), iLQF does not give 100% throughput!

• Let’s formalize this class of “greedy, maximal” matchings which are

implmentation-friendly

- essentially, most switch schedulers follow the “request-grant-accept” (RGA) routine

- this requires an input (output) to rank all the outputs (inputs) from 1 to N

- e.g. input i ranks output j higher than output k if qij(n) > qik(n)

- given these ranking lists, run the “stable marriage” routine

- this is essentially the RGA routine
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