
Input-queued switches: Scheduling algorithms for a crossbar
switch

EE 384X Packet Switch Architectures 1

Overview

• Today’s lecture

- the input-buffered switch architecture

- the head-of-line blocking phenomenon

- algorithms for 100% throughput

(maximum weight matching algorithm, randomized versions)

• Subsequent lectures

- more details on each of the above

EE 384X Packet Switch Architectures 2

A Detailed Look at Switching

• Packets arrive on line cards. The decision to route is made. Switching is

done. Output scheduling follows. Packets are sent out.

Forwarding
Table

Decision

Forwarding
Table

Decision

Forwarding
Table

Decision
Output

Scheduling

Forwarding

Forwarding

Forwarding

Interconnection
Fabric

EE 384X Packet Switch Architectures 3

Input-queued Switches

1

1

Upto one cell forwarded to each output

2

2

3

2

1

1 2

3

3

3

Upto one cell removed from each input

In each cell time,

"Speedup" = 1

• Major problem: Head-of-line blocking limits throughput to 58%

• Overcoming HoL blocking: Use virtual output-queues

2

1

2

11
2

1

22

- with this architectural change, we can get 100% throughput

- but, first let’s understand HoL blocking

EE 384X Packet Switch Architectures 4

Head-of-line Blocking

1

1

Upto one cell forwarded to each output

2

2

3

2

1

1 2

3

3

3

Upto one cell removed from each input

In each cell time,

"Speedup" = 1

• The setting: Consider an N × N input-queued switch

- time is slotted, so that at most one packet can arrive (depart) per time slot

- packets arrive at each input with probability p, independently across inputs/time

- the destination of a packet is equally likely to be one of the outputs

and independent across all packets

- the “load matrix” {λij} equals { p
N
} for every i and j

• The scheduling policy: At each time an output chooses one HoL packet u.a.r.

- Question: What is the highest value of p so that back-logs don’t grow without bound?

EE 384X Packet Switch Architectures 5

Head-of-line Blocking

• This is easy to understand using a 2×2 switch.

1222...

222... 2 22... 2

22212222

12222...

... ...

Time slot 2

Time slot 1 Time slot 2 Time slot 3

Modelled
using 2 balls
and 2 boxes

Time slot 1 Time slot 3

2

• Saturation analysis

- an infinite number of packets are placed in both buffers initially

- the numbers on the packets indicate the output they want to go to

- the numbers are chosen independently and uniformly from {1, ..., N}

- this ball-bin model can be used to determine the maximum throughput, p

EE 384X Packet Switch Architectures 6

• The ball-bin model

- the bin on the left corresponds to output 1, that on the right to output 2

- imagine there are two balls, each one corresponding to one of the HoL packets

- at time 0 drop each ball independently into one of the bins u.a.r.

- in each successive time slot do the following...

1. remove at most one ball from each non-empty bin

2. drop each ball-in-hand into one of the bins independently and u.a.r.

- note that this process is a Markov chain

• The equivalence

- you are sitting either at an output and recording whether a packet departed or not

- throughput from an output = P (a packet departs from it in equilibrium)

= P (the corresponding bin is non-empty in equilibrium)

• Throughput

- from switch = 1 ×P (both balls in same bin) + 2 ×P (both balls in different bins)

= 1 (2 . 1
2.

1
2) + 2 (2 . 1

2.
1
2) = 1.5

- from output i: 1.5/2 = .75 (by symmetry)

EE 384X Packet Switch Architectures 7

Larger i/q switches

• We can determine the throughput of HoL blocked N × N i/q switches using

Markov chains for any N

• But the problem is: state space explosion !

Switch size, N # of states Throughput

1 1 1.00

2 2 0.75

3 3 0.6825

4 5 0.6552

5 7 0.64

6 11 0.6301

- the number of states grows like the partition function

- we can use a simple queueing-theoretic trick

EE 384X Packet Switch Architectures 8

Throughput of HoL Blocked Switches

• Saturation analysis: use balls/boxes model with N balls and N boxes

- focus on the first box (i.e. output 1)

- let Xt be number of balls box 1 at time t = number of HoL packets for output 1

- let DN
t be the number of balls removed from all boxes at end of time t

(note that DN
t equals switch throughput at time t)

• Let

- At+1 be number of balls dropping into box 1 at time t + 1

- Xt satisfies the recursion Xt+1 = Xt + At+1 − 1{Xt>0}, (∗)
where P (At+1 = k|DN

t) =
(

DN
t

k

) (

1
N

)k (

1 − 1
N

)DN
t
−k

• A useful approximation

- E(DN
t) is the average switch throughput, the quantity we’re interested in

- let E(DN
t) = ρN , where ρ is the average per output throughput

- when N is large enough, it is possible to show P (DN
t = ρN) ≈ 1

- so At has a Poisson distribution: P (At = k) ≈ e−ρρk

k!

EE 384X Packet Switch Architectures 9

• Therefore Xt+1 = Xt + At+1 − 1{Xt>0}, where

- At+1 is independent of Xt

- {At} is IID, Poisson(ρ); therefore E(At) = ρ and E(A2) = ρ + ρ2

- Question: What is ρ?

• Take expectations at equation (∗)
- and hit steady-state to drop the t subscript

- we get: EX = EX + EA − P (X > 0) or that EA = P (X > 0)

• We want E(X)

- so, square equation (∗) and take expectations to get

E(X2) = E(X2)+E(A2)+P (X > 0)+2E(AX)−2 E(X 1{X>0})−2E(A 1{X>0})

- but, on the RHS, A and X are independent

- using this to simplify we get EX = E(A2) + P (X>0) − 2 EAP (X>0)
2 (1−EA) = E(A2) + EA − 2 (EA)2

2 (1−EA)

- since EA = ρ, E(A2) = ρ + ρ2, we get

EX =
2ρ − ρ2

2 (1 − ρ)

EE 384X Packet Switch Architectures 10

• We can find ρ if we know what EX is ...

- but, EX = 1 because there are exactly N balls and N boxes !

that is, the average number of balls in box 1 equals 1 at all times

- solving the quadratic

1 =
2ρ − ρ2

2 (1 − ρ)

- gives ρ = 2 −
√

2 ≈ 58.6%

→ this is a famous result in switching, due to Karol et. al. (1987)

• Thus, to eliminate HoL blocking, we need to change the FIFO organization

of the input buffers

- at input i, use a separate queue for the packets destined for output j

- this queue is denoted VOQij

2

1

2

11
2

1

22

EE 384X Packet Switch Architectures 11

Notation

• Consider an N × N input-queued switch with VOQs.

- let Aij(n) indicate the packet arrivals at input i for output j

- that is, Aij(n) = 1 if a packet arrived at input i for output j in time slot n

- let {Aij(n)} be IID across i, j and n

- let λij = E(Aij(n)) be the arrival rate; note

- given the line rate L, {Aij(n)} is said to be admissible if

-
∑

j λij < L for every i: no input is oversubscribed

-
∑

i λij < L for every j: no output is oversubscribed

- let qij(n)) be the queue-size (number of back-logged packets) in VOQij at time n

• Schedule at time n: S(n)

- a schedule or matching at time n is a decision to connect input-output pairs so that

no input (output) is connected to more than one output (input)

→ this a direct consequence of using a crossbar interconnection fabric

- let Sij(n) indicate whether input i and output j are connected at time n

- thus, S(n) = {Sij(n)} is a permutation matrix

EE 384X Packet Switch Architectures 12

• Scheduling algorithm

- is a rule that determines schedules S(n) for every n

- it can do this either by knowing the traffic matrix: Λ = {λij}
- or by merely knowing Q(n) = {qij(n)}
- most switches are designed to work for the second case (since Λ is usually unknown)

• Goals for designing good scheduling algorithms

1. 100% throughput: ensure that supn,i,jE [qij(n)] < ∞ so long as input is admissible

- thus, what comes in will (eventually) go out if no input/output is oversubscribed

2. minimize back-logs, delays: minimize supn,i,jE [qij(n)]

• Thus, switch scheduling is

- designing input-output matching algorithms

- either by knowing Λ or Q(n)

- so as to achieve high throughputs and low delays/back-logs

- a notational convenience: we’ll normalize L = 1 so that
∑

i

λij ≤ 1,
∑

j

λij ≤ 1

for all admissible traffic

EE 384X Packet Switch Architectures 13

Suppose Λ is known

• Some facts about Λ

- first note that it is doubly sub-stochastic, and not necessarily uniform (λij 6= c)

(i.e. each row and column sum is less than 1, all entries are non-negative)

- Fact 0: a doubly sub-stochastic matrix is majorized by a suitable doubly stochastic matrix

(there exists a Λ′ = {λ′
ij} such that λij < λ′

ij and
∑

i λ
′
ij = 1 =

∑

j λ′
ij)

- Fact 1: the set of all doubly stochastic matrices is convex

- Fact 2: any convex, compact set in Rn has extreme points

(Facts 0 and 1 are trivially true, Fact 2 is deeper.)

- Theorem (Birkhoff-von Neumann): Permutation matrices are the extreme points of the set

of doubly stochastic matrices.

• Use this as follows

- given Λ, we find a suitable doubly stochastic Λ′ to dominate it

- then we decompose Λ′ =
∑K

k=1 αkP
k,

where
∑K

k=1 αk = 1 and αk > 0, and P k are permutation matrices

EE 384X Packet Switch Architectures 14

• Scheduling algorithm

- let C be a K-sided coin with P (C = k) = αk

- at time n, flip C and let S(n) = P k if C = k

- note that

P (Sij(n) = 1) =
∑K

k=1 P (Sij(n) = 1|C = k)P (C = k) =
∑K

k=1 P k
ijαk = λ′

ij

• Proof that this algorithm gives 100% throughput

- since qij(n) = [qij(n − 1) + Aij(n) − Sij(n)]+

- we see that qij(n) is a simple birth-death Markov chain

- with birth rate = P (Aij(n) = 1) = E [Aij(n)] = λij

- and death rate = P (Sij(n) = 1) = λ′
ij > λij

→ therefore, the chain is ergodic and E [qij(n)] < ∞ QED

• In summary

- this simple algorithm gives 100% throughput

- note that it may not minimze back-logs/delays (in fact, it is quite poor)

- it is easy to implement the algorithm

- we will lose this feature (implementation gets harder) when we don’t know Λ

EE 384X Packet Switch Architectures 15

Suppose Λ is unknown

• Then our scheduling algorithm will use Q(n)

- the switch scheduling problem becomes a bipartite graph matching problem

- i.e. consider a N × N bipartite graph

- the edge, eij(n), is present between i/p i and o/p j at time n iff qij(n) > 0

- the weight, wij(n), of eij(n) is some increasing function of qij(n); e.g. wij(n) = qij(n)

1

2

3

2

1
2 2 2

2 2

1 1 1 1

4

3
2

3 3 3 3

3 3

3
2

5
1

3

3

• Designing scheduling algorithms becomes finding matchings in this bipartite

graph

- so that we get 100% throughput for all admissible Λ (which is unknown)

- and, the average back-log or delay is minimized

- Question: What matchings should we find?

EE 384X Packet Switch Architectures 16

4

3
2

5

2

4

5

2 2

4

2

A Maximal Size
 Match Match

The Maximum Size
 Match

The Maximum Weight

1 1

• Trade-offs

- the maximal size matching is easiest to implement (in fact, this is done in practice)

→ but, it doesn’t give 100% throughput, unless one uses a higher speedup (next class)

- the maximum size matching is harder to implement (esp because of augmenting paths)

→ surprisingly, it doesn’t give 100% throughput either!

- the maximum weight matching is also hard to implement (because of augmenting paths)

→ but, it does give 100% throughput!

• Question:

- how does one prove that the max weight matching algorithm gives 100% throughput?

- need to use Lyapunov functions (aka potential functions)

EE 384X Packet Switch Architectures 17

Discussion of scheduling algorithms

• We have seen that max wt and max size matchings are not suitable for

high-speed implementations. Let’s understand why.

- basically at line rates of 10 gbps (OC 192 lines), packets arrive roughly 40-50 ns apart

- this means scheduling decisions need to be made at this speed

- now, finding maximum weight matchings takes roughly O(N 3) iterations

- this means for a 30 port switch, the worst-case number of iterations is about 27,000

• But, time complexity is not the biggest problem

- we may be able to overcome this with hardware optimizations

- the bigger problem is that it is hard to pipeline the max wt matching routine

- that is, if the decisions made in each iteration about which edges to include

in the final matching were binding, then the iterations can be executed serially

- but, the augmenting path routine used in max wt matching algorithms prevents this

i.e. we will have to backtrack

- so the entire pipeline is held up while the matching for time slot n is decided

EE 384X Packet Switch Architectures 18

• This is easy to understand using an example of the opposite kind

- let’s consider the “greedy maximum weight matching”; called iLQF

- given a weighted bipartite graph, in each iteration choose the heaviest edge

from the residual graph (break ties at random); you’ll be done in N iterations

→ the key point here is that future iterations do not disconnect currently chosen edges

→ this is pipelineable

- the matching found by iLQF is maximal; and its weight ≥ 0.5 × max wt matching

- annoyingly (or interestingly), iLQF does not give 100% throughput!

• Let’s formalize this class of “greedy, maximal” matchings which are

implmentation-friendly

- essentially, most switch schedulers follow the “request-grant-accept” (RGA) routine

- this requires an input (output) to rank all the outputs (inputs) from 1 to N

- e.g. input i ranks output j higher than output k if qij(n) > qik(n)

- given these ranking lists, run the “stable marriage” routine

- this is essentially the RGA routine

EE 384X Packet Switch Architectures 19

