Input-queued switches: Scheduling algorithms for a crossbar switch

Overview

- Today's lecture
- the input-buffered switch architecture
- the head-of-line blocking phenomenon
- algorithms for 100% throughput
(maximum weight matching algorithm, randomized versions)
- Subsequent lectures
- more details on each of the above

A Detailed Look at Switching

- Packets arrive on line cards. The decision to route is made. Switching is done. Output scheduling follows. Packets are sent out.

Input-queued Switches

In each cell time,

Upto one cell removed from each input Upto one cell forwarded to each output
"Speedup" = 1

- Major problem: Head-of-line blocking limits throughput to 58\%
- Overcoming HoL blocking: Use virtual output-queues

- with this architectural change, we can get 100% throughput
- but, first let's understand HoL blocking

Head-of-line Blocking

In each cell time,

Upto one cell removed from each input Upto one cell forwarded to each output
"Speedup" = 1

- The setting: Consider an $N \times N$ input-queued switch
- time is slotted, so that at most one packet can arrive (depart) per time slot
- packets arrive at each input with probability p, independently across inputs/time
- the destination of a packet is equally likely to be one of the outputs and independent across all packets
- the "load matrix" $\left\{\lambda_{i j}\right\}$ equals $\left\{\frac{p}{N}\right\}$ for every i and j
- The scheduling policy: At each time an output chooses one HoL packet u.a.r.
- Question: What is the highest value of p so that back-logs don't grow without bound?

Head-of-line Blocking

- This is easy to understand using a 2×2 switch.

- Saturation analysis
- an infinite number of packets are placed in both buffers initially
- the numbers on the packets indicate the output they want to go to
- the numbers are chosen independently and uniformly from $\{1, \ldots, N\}$
- this ball-bin model can be used to determine the maximum throughput, p
- The ball-bin model
- the bin on the left corresponds to output 1, that on the right to output 2
- imagine there are two balls, each one corresponding to one of the HoL packets
- at time 0 drop each ball independently into one of the bins u.a.r.
- in each successive time slot do the following...

1. remove at most one ball from each non-empty bin
2. drop each ball-in-hand into one of the bins independently and u.a.r.

- note that this process is a Markov chain
- The equivalence
- you are sitting either at an output and recording whether a packet departed or not
- throughput from an output $=P$ (a packet departs from it in equilibrium)
$=P($ the corresponding bin is non-empty in equilibrium $)$
- Throughput
- from switch $=1 \times P$ (both balls in same bin) $+2 \times P$ (both balls in different bins)

$$
=1\left(2 \cdot \frac{1}{2} \cdot \frac{1}{2}\right)+2\left(2 \cdot \frac{1}{2} \cdot \frac{1}{2}\right)=1.5
$$

- from output i: $1.5 / 2=.75$ (by symmetry)

Larger i/q switches

- We can determine the throughput of HoL blocked $N \times N \mathrm{i} / \mathrm{q}$ switches using Markov chains for any N
- But the problem is: state space explosion !

Switch size, N	\# of states	Throughput
1	1	1.00
2	2	0.75
3	3	0.6825
4	5	0.6552
5	7	0.64
6	11	0.6301

- the number of states grows like the partition function
- we can use a simple queueing-theoretic trick

Throughput of HoL Blocked Switches

- Saturation analysis: use balls/boxes model with N balls and N boxes
- focus on the first box (i.e. output 1)
- let X_{t} be number of balls box 1 at time $t=$ number of HoL packets for output 1
- let D_{t}^{N} be the number of balls removed from all boxes at end of time t (note that D_{t}^{N} equals switch throughput at time t)
- Let
- A_{t+1} be number of balls dropping into box 1 at time $t+1$
- X_{t} satisfies the recursion $X_{t+1}=X_{t}+A_{t+1}-1_{\left\{X_{t}>0\right\}}$,
where $P\left(A_{t+1}=k \mid D_{t}^{N}\right)=\binom{D_{t}^{N}}{k}\left(\frac{1}{N}\right)^{k}\left(1-\frac{1}{N}\right)^{D_{t}^{N}-k}$
- A useful approximation
- $E\left(D_{t}^{N}\right)$ is the average switch throughput, the quantity we're interested in
- let $E\left(D_{t}^{N}\right)=\rho N$, where ρ is the average per output throughput
- when N is large enough, it is possible to show $P\left(D_{t}^{N}=\rho N\right) \approx 1$
- so A_{t} has a Poisson distribution: $P\left(A_{t}=k\right) \approx e^{-\rho \frac{\rho^{k}}{k!}}$
- Therefore $X_{t+1}=X_{t}+A_{t+1}-1_{\left\{X_{t}>0\right\}}$, where
- A_{t+1} is independent of X_{t}
- $\left\{A_{t}\right\}$ is IID, $\operatorname{Poisson}(\rho)$; therefore $E\left(A_{t}\right)=\rho$ and $E\left(A^{2}\right)=\rho+\rho^{2}$
- Question: What is ρ ?
- Take expectations at equation $(*)$
- and hit steady-state to drop the t subscript
- we get: $E X=E X+E A-P(X>0)$ or that $E A=P(X>0)$
- We want $E(X)$
- so, square equation $(*)$ and take expectations to get

$$
E\left(X^{2}\right)=E\left(X^{2}\right)+E\left(A^{2}\right)+P(X>0)+2 E(A X)-2 E\left(X 1_{\{X>0\}}\right)-2 E\left(A 1_{\{X>0\}}\right)
$$

- but, on the RHS, A and X are independent
- using this to simplify we get $E X=\frac{E\left(A^{2}\right)+P(X>0)-2 E A P(X>0)}{2(1-E A)}=\frac{E\left(A^{2}\right)+E A-2(E A)^{2}}{2(1-E A)}$
- since $E A=\rho, E\left(A^{2}\right)=\rho+\rho^{2}$, we get

$$
E X=\frac{2 \rho-\rho^{2}}{2(1-\rho)}
$$

- We can find ρ if we know what $E X$ is ...
- but, $E X=1$ because there are exactly N balls and N boxes !
that is, the average number of balls in box 1 equals 1 at all times
- solving the quadratic

$$
1=\frac{2 \rho-\rho^{2}}{2(1-\rho)}
$$

- gives $\rho=2-\sqrt{2} \approx 58.6 \%$
\rightarrow this is a famous result in switching, due to Karol et. al. (1987)
- Thus, to eliminate HoL blocking, we need to change the FIFO organization of the input buffers
- at input i, use a separate queue for the packets destined for output j
- this queue is denoted $\mathrm{VOQ}_{i j}$

Notation

- Consider an $N \times N$ input-queued switch with VOQs.
- let $A_{i j}(n)$ indicate the packet arrivals at input i for output j
- that is, $A_{i j}(n)=1$ if a packet arrived at input i for output j in time slot n
- let $\left\{A_{i j}(n)\right\}$ be IID across i, j and n
- let $\lambda_{i j}=E\left(A_{i j}(n)\right)$ be the arrival rate; note
- given the line rate $L,\left\{A_{i j}(n)\right\}$ is said to be admissible if
- $\sum_{j} \lambda_{i j}<L$ for every i : no input is oversubscribed
- $\sum_{i} \lambda_{i j}<L$ for every j : no output is oversubscribed
- let $q_{i j}(n)$) be the queue-size (number of back-logged packets) in $\mathrm{VOQ}_{i j}$ at time n
- Schedule at time $n: S(n)$
- a schedule or matching at time n is a decision to connect input-output pairs so that no input (output) is connected to more than one output (input)
\rightarrow this a direct consequence of using a crossbar interconnection fabric
- let $S_{i j}(n)$ indicate whether input i and output j are connected at time n
- thus, $S(n)=\left\{S_{i j}(n)\right\}$ is a permutation matrix
- Scheduling algorithm
- is a rule that determines schedules $S(n)$ for every n
- it can do this either by knowing the traffic matrix: $\Lambda=\left\{\lambda_{i j}\right\}$
- or by merely knowing $Q(n)=\left\{q_{i j}(n)\right\}$
- most switches are designed to work for the second case (since Λ is usually unknown)
- Goals for designing good scheduling algorithms

1. 100% throughput: ensure that $\sup _{n, i, j} E\left[q_{i j}(n)\right]<\infty$ so long as input is admissible

- thus, what comes in will (eventually) go out if no input/output is oversubscribed

2. minimize back-logs, delays: minimize $\sup _{n, i, j} E\left[q_{i j}(n)\right]$

- Thus, switch scheduling is
- designing input-output matching algorithms
- either by knowing Λ or $Q(n)$
- so as to achieve high throughputs and low delays/back-logs
- a notational convenience: we'll normalize $L=1$ so that

$$
\sum_{i} \lambda_{i j} \leq 1, \quad \sum_{j} \lambda_{i j} \leq 1
$$

for all admissible traffic

Suppose Λ is known

- Some facts about Λ

- first note that it is doubly sub-stochastic, and not necessarily uniform ($\lambda_{i j} \neq c$)
(i.e. each row and column sum is less than 1 , all entries are non-negative)
- Fact 0 : a doubly sub-stochastic matrix is majorized by a suitable doubly stochastic matrix (there exists a $\Lambda^{\prime}=\left\{\lambda_{i j}^{\prime}\right\}$ such that $\lambda_{i j}<\lambda_{i j}^{\prime}$ and $\sum_{i} \lambda_{i j}^{\prime}=1=\sum_{j} \lambda_{i j}^{\prime}$)
- Fact 1 : the set of all doubly stochastic matrices is convex
- Fact 2: any convex, compact set in R^{n} has extreme points
(Facts 0 and 1 are trivially true, Fact 2 is deeper.)
- Theorem (Birkhoff-von Neumann): Permutation matrices are the extreme points of the set of doubly stochastic matrices.
- Use this as follows
- given Λ, we find a suitable doubly stochastic Λ^{\prime} to dominate it
- then we decompose $\Lambda^{\prime}=\sum_{k=1}^{K} \alpha_{k} P^{k}$,
where $\sum_{k=1}^{K} \alpha_{k}=1$ and $\alpha_{k}>0$, and P^{k} are permutation matrices
- Scheduling algorithm
- let C be a K-sided coin with $P(C=k)=\alpha_{k}$
- at time n, flip C and let $S(n)=P^{k}$ if $C=k$
- note that

$$
P\left(S_{i j}(n)=1\right)=\sum_{k=1}^{K} P\left(S_{i j}(n)=1 \mid C=k\right) P(C=k)=\sum_{k=1}^{K} P_{i j}^{k} \alpha_{k}=\lambda_{i j}^{\prime}
$$

- Proof that this algorithm gives 100% throughput
- since $q_{i j}(n)=\left[q_{i j}(n-1)+A_{i j}(n)-S_{i j}(n)\right]^{+}$
- we see that $q_{i j}(n)$ is a simple birth-death Markov chain
- with birth rate $=P\left(A_{i j}(n)=1\right)=E\left[A_{i j}(n)\right]=\lambda_{i j}$
- and death rate $=P\left(S_{i j}(n)=1\right)=\lambda_{i j}^{\prime}>\lambda_{i j}$
\rightarrow therefore, the chain is ergodic and $E\left[q_{i j}(n)\right]<\infty$
- In summary
- this simple algorithm gives 100% throughput
- note that it may not minimze back-logs/delays (in fact, it is quite poor)
- it is easy to implement the algorithm
- we will lose this feature (implementation gets harder) when we don't know Λ

Suppose Λ is unknown

- Then our scheduling algorithm will use $Q(n)$
- the switch scheduling problem becomes a bipartite graph matching problem
- i.e. consider a $N \times N$ bipartite graph
- the edge, $e_{i j}(n)$, is present between $\mathrm{i} / \mathrm{p} i$ and $\mathrm{o} / \mathrm{p} j$ at time n iff $q_{i j}(n)>0$
- the weight, $w_{i j}(n)$, of $e_{i j}(n)$ is some increasing function of $q_{i j}(n)$; e.g. $w_{i j}(n)=q_{i j}(n)$

- Designing scheduling algorithms becomes finding matchings in this bipartite graph
- so that we get 100% throughput for all admissible Λ (which is unknown)
- and, the average back-log or delay is minimized
- Question: What matchings should we find?

A Maximal Size Match

The Maximum Size Match

The Maximum Weight Match

- Trade-offs
- the maximal size matching is easiest to implement (in fact, this is done in practice)
\rightarrow but, it doesn't give 100\% throughput, unless one uses a higher speedup (next class)
- the maximum size matching is harder to implement (esp because of augmenting paths)
\rightarrow surprisingly, it doesn't give 100% throughput either!
- the maximum weight matching is also hard to implement (because of augmenting paths)
\rightarrow but, it does give 100\% throughput!
- Question:
- how does one prove that the max weight matching algorithm gives 100% throughput?
- need to use Lyapunov functions (aka potential functions)

Discussion of scheduling algorithms

- We have seen that max wt and max size matchings are not suitable for high-speed implementations. Let's understand why.
- basically at line rates of 10 gbps (OC 192 lines), packets arrive roughly $40-50$ ns apart
- this means scheduling decisions need to be made at this speed
- now, finding maximum weight matchings takes roughly $O\left(N^{3}\right)$ iterations
- this means for a 30 port switch, the worst-case number of iterations is about 27,000
- But, time complexity is not the biggest problem
- we may be able to overcome this with hardware optimizations
- the bigger problem is that it is hard to pipeline the max wt matching routine
- that is, if the decisions made in each iteration about which edges to include in the final matching were binding, then the iterations can be executed serially
- but, the augmenting path routine used in max wt matching algorithms prevents this i.e. we will have to backtrack
- so the entire pipeline is held up while the matching for time slot n is decided
- This is easy to understand using an example of the opposite kind
- let's consider the "greedy maximum weight matching"; called iLQF
- given a weighted bipartite graph, in each iteration choose the heaviest edge from the residual graph (break ties at random); you'll be done in N iterations
\rightarrow the key point here is that future iterations do not disconnect currently chosen edges
\rightarrow this is pipelineable
- the matching found by iLQF is maximal; and its weight $\geq 0.5 \times$ max wt matching
- annoyingly (or interestingly), iLQF does not give 100% throughput!
- Let's formalize this class of "greedy, maximal" matchings which are implmentation-friendly
- essentially, most switch schedulers follow the "request-grant-accept" (RGA) routine
- this requires an input (output) to rank all the outputs (inputs) from 1 to N
- e.g. input i ranks output j higher than output k if $q_{i j}(n)>q_{i k}(n)$
- given these ranking lists, run the "stable marriage" routine
- this is essentially the RGA routine

