Input-queued switches: Scheduling algorithms for a crossbar
switch

EE 384X Packet Switch Architectures 1

Overview

e Today's lecture

- the input-buffered switch architecture
- the head-of-line blocking phenomenon

- algorithms for 100% throughput

(maximum weight matching algorithm, randomized versions)

e Subsequent lectures

- more details on each of the above

EE 384X Packet Switch Architectures

A Detailed Look at Switching

e Packets arrive on line cards. The decision to route is made. Switching is
done. Output scheduling follows. Packets are sent out.

Forwarding
Table .
1 Interconnection

— Fabric

I
|

Forwarding
Decision

Output

2
0
>
@
Q
c
=
«

Forwarding
Table

— I

Forwarding
Decision

UL
|

Forwarding
Table

L 1

Forwarding
Decision

\
L
|

EE 384X Packet Switch Architectures

Input-queued Switches

1 —r/
- In each cell time,

2 Upto one cell removed from each input
—

Upto one cell forwarded to each output

3 T D

- Speedup” =1
\ \

e Major problem: Head-of-line blocking limits throughput to 58%

e Overcoming HolL blocking: Use virtual output-queues

- with this architectural change, we can get 100% throughput

- but, first let's understand Hol blocking

EE 384X Packet Switch Architectures

Head-of-line Blocking

1 —m/1
- In each cell time,

2 Upto one cell removed from each input
—_— 3

Upto one cell forwarded to each output

3 n LL—

— Speedup” =1
\

e The setting: Consider an N X N input-queued switch

- time is slotted, so that at most one packet can arrive (depart) per time slot
- packets arrive at each input with probability p, independently across inputs/time
- the destination of a packet is equally likely to be one of the outputs

and independent across all packets

- the "load matrix” {\;;} equals {{} for every i and j
e The scheduling policy: At each time an output chooses one Hol packet u.a.r.

- Question: What is the highest value of p so that back-logs don’t grow without bound?

EE 384X Packet Switch Architectures 5

Head-of-line Blocking

e This is easy to understand using a 2x2 switch.

Time slot 1 Time slot 2 Time slot 3
22221% 2222% w222
22221% 22221% .. 222
[) []
Modelled
using 2 balls u u
and 2 boxes
Time slot 1 Time slot 2 Time slot 3

HAN ol k

e Saturation analysis

- an infinite number of packets are placed in both buffers initially
- the numbers on the packets indicate the output they want to go to

- the numbers are chosen independently and uniformly from {1,..., N}

- this ball-bin model can be used to determine the maximum throughput, p

EE 384X Packet Switch Architectures

e [he ball-bin model

the bin on the left corresponds to output 1, that on the right to output 2

imagine there are two balls, each one corresponding to one of the Hol packets

at time 0 drop each ball independently into one of the bins u.a.r.

in each successive time slot do the following...
1. remove at most one ball from each non-empty bin

2. drop each ball-in-hand into one of the bins independently and u.a.r.

- note that this process is a Markov chain

e The equivalence

- you are sitting either at an output and recording whether a packet departed or not
- throughput from an output = P(a packet departs from it in equilibrium)
= P(the corresponding bin is non-empty in equilibrium)
e Throughput
- from switch = 1 x P(both balls in same bin) 4+ 2 x P(both balls in different bins)
=1(2.335)+2(2.453) =15

- from output i: 1.5/2 = .75 (by symmetry)

EE 384X Packet Switch Architectures

Larger i/q switches

e We can determine the throughput of HolL blocked N x N i/q switches using
Markov chains for any N

e But the problem is: state space explosion !

Switch size, N | # of states | Throughput
1 1 1.00
2 2 0.75
3 3 0.6825
4 5 0.6552
5 7 0.64
6 11 0.6301

- the number of states grows like the partition function

- we can use a simple queueing-theoretic trick

EE 384X Packet Switch Architectures 8

Throughput of HolL Blocked Switches

e Saturation analysis: use balls/boxes model with N balls and N boxes

- focus on the first box (i.e. output 1)
- let X; be number of balls box 1 at time ¢ = number of HolL packets for output 1

- let D} be the number of balls removed from all boxes at end of time t

(note that D" equals switch throughput at time t)

o Let

- A1 be number of balls dropping into box 1 at time ¢ + 1
- X, satisfies the recursion X; 1 = X; + A1 — 1ix,~0), (%)

where P41 = KDY = () ()" (1=)"

e A useful approximation
- E(D}) is the average switch throughput, the quantity we're interested in
- let E(DY) = pN, where p is the average per output throughput
- when N is large enough, it is possible to show P(D;¥ = pN) ~ 1

- so A; has a Poisson distribution: P(A; = k) & e—p%f

EE 384X Packet Switch Architectures

e Therefore X1 = X; + Ay1 — 1x,50), Where
- A1 is independent of X,
- {A;} is 1ID, Poisson(p); therefore E(A;) = p and E(A?) = p + p*
- Question: What is p?
e Take expectations at equation (x)
- and hit steady-state to drop the ¢ subscript
-we get: FEX = FEX+ FEA— P(X >0) orthat EA= P(X > 0)
o We want E(X)
- so, square equation (x) and take expectations to get
E(X?) = E(X?)+E(A%)+P(X > 0)+2E(AX) =2 E(X 1{x-0) —2E(Alix-q)
- but, on the RHS, A and X are independent

E(A%) + P(X>0) — 2EAP(X>0) _ E(A%) + EA — 2(EA)?
2(1—EA) - 2(1-EA)

- using this to simplify we get £X =
- since EA = p, E(A?) = p + p?, we get

20 — 2
Ex =P
2(1—p)

EE 384X Packet Switch Architectures 10

e We can find p if we know what £X is ...

- but, £X =1 because there are exactly /N balls and N boxes !
that is, the average number of balls in box 1 equals 1 at all times

- solving the quadratic

2p — p°
R
2(1—=p)
- gives p =2 — /2 ~ 58.6%

— this is a famous result in switching, due to Karol et. al. (1987)

e Thus, to eliminate HolL blocking, we need to change the FIFO organization
of the input buffers

- at input 7, use a separate queue for the packets destined for output j

- this queue is denoted VOQ;;

EE 384X Packet Switch Architectures 11

Notation

e Consider an N x N input-queued switch with VOQs.

- let A;;(n) indicate the packet arrivals at input ¢ for output j
- that is, A;j(n) =1 if a packet arrived at input ¢ for output j in time slot n
- let {A4;;(n)} be lID across ¢, j and n
- let \j; = E(A;;(n)) be the arrival rate; note
- given the line rate L, {A;;(n)} is said to be admissible if
- Zj Aij < L for every 7: no input is oversubscribed

- > Aij < L for every j: no output is oversubscribed

- let ¢;j(n)) be the queue-size (number of back-logged packets) in VOQ;; at time n

e Schedule at time n: S(n)

- a schedule or matching at time n is a decision to connect input-output pairs so that
no input (output) is connected to more than one output (input)
— this a direct consequence of using a crossbar interconnection fabric

- let Sj;(n) indicate whether input ¢ and output j are connected at time n

- thus, S(n) = {95;;(n)} is a permutation matrix

EE 384X Packet Switch Architectures

12

e Scheduling algorithm

is a rule that determines schedules S(n) for every n

it can do this either by knowing the traffic matrix: A = {\;;}

or by merely knowing Q(n) = {¢;;(n)}

most switches are designed to work for the second case (since A is usually unknown)

e Goals for designing good scheduling algorithms

1. 100% throughput: ensure that sup,; ;E [gi;(n)] < oo so long as input is admissible

- thus, what comes in will (eventually) go out if no input/output is oversubscribed

2. minimize back-logs, delays: minimize sup, ; ;E [¢;;j(n)]

e Thus, switch scheduling is

designing input-output matching algorithms

either by knowing A or Q(n)

so as to achieve high throughputs and low delays/back-logs

a notational convenience: we'll normalize L. = 1 so that

Z)\@j <1, Z)\ij <1
i J

for all admissible traffic

EE 384X Packet Switch Architectures

13

Suppose A is known

e Some facts about A

- first note that it is doubly sub-stochastic, and not necessarily uniform (\;; # c)
(i.e. each row and column sum is less than 1, all entries are non-negative)

- Fact 0: a doubly sub-stochastic matrix is majorized by a suitable doubly stochastic matrix
(there exists a A" = {A};} such that Aj; < Al;and 3, A\ =1=) . \))

- Fact 1: the set of all doubly stochastic matrices is convex

- Fact 2: any convex, compact set in R" has extreme points
(Facts 0 and 1 are trivially true, Fact 2 is deeper.)

- Theorem (Birkhoff-von Neumann): Permutation matrices are the extreme points of the set

of doubly stochastic matrices.

e Use this as follows

- given A, we find a suitable doubly stochastic A’ to dominate it
K
- then we decompose A’ = ;" | . P¥,

where Zsz1 ar = 1 and ay, > 0, and P* are permutation matrices

EE 384X Packet Switch Architectures 14

e Scheduling algorithm
- let C' be a K-sided coin with P(C' = k) =
- at time n, flip C and let S(n) = P*if C =k
- note that
P(Sij(n) = 1) = Xy P(Sij(n) = 1|C = k)P(C = k) = Fyy Phow = X

e Proof that this algorithm gives 100% throughput

- since g;;(n) = [g;;(n — 1) + A;j(n) — Si;(n)]"

- we see that ¢;;j(n) is a simple birth-death Markov chain

- with birth rate = P(A4;j(n) =1) = E [A;;(n)] = N

- and death rate = P(S5;;(n) =1) =)\gj > Aij

— therefore, the chain is ergodic and E [g;;(n)] < oo QED

e In summary

- this simple algorithm gives 100% throughput
- note that it may not minimze back-logs/delays (in fact, it is quite poor)

- it is easy to implement the algorithm

- we will lose this feature (implementation gets harder) when we don't know A

EE 384X Packet Switch Architectures 15

Suppose A is unknown

e Then our scheduling algorithm will use Q(n)

the switch scheduling problem becomes a bipartite graph matching problem

i.e. consider a N X N bipartite graph

the edge, e;;(n), is present between i/p i and o/p j at time n iff ¢;;(n) > 0

SN—

the weight, w;;(n), of e;;(n) is some increasing function of ¢;;(n); e.g. w;;(n) = g;;(n)

i

|
i
|

w
w
w
w
w

3

w

e Designing scheduling algorithms becomes finding matchings in this bipartite
graph
- so that we get 100% throughput for all admissible A (which is unknown)

- and, the average back-log or delay is minimized

- Question: What matchings should we find?

EE 384X Packet Switch Architectures 16

o—po o—po
0‘2» [°
\~
o »© o
2
A Maximal Size The Maximum Size The Maximum Weight
Match Match Match

e [rade-offs

- the maximal size matching is easiest to implement (in fact, this is done in practice)

— but, it doesn't give 100% throughput, unless one uses a higher speedup (next class)

- the maximum size matching is harder to implement (esp because of augmenting paths)
— surprisingly, it doesn't give 100% throughput either!

- the maximum weight matching is also hard to implement (because of augmenting paths)

— but, it does give 100% throughput!

e Question:

- how does one prove that the max weight matching algorithm gives 100% throughput?

- need to use Lyapunov functions (aka potential functions)

EE 384X Packet Switch Architectures

17

Discussion of scheduling algorithms

e \We have seen that max wt and max size matchings are not suitable for
high-speed implementations. Let's understand why.

basically at line rates of 10 gbps (OC 192 lines), packets arrive roughly 40-50 ns apart

this means scheduling decisions need to be made at this speed

now, finding maximum weight matchings takes roughly O(NN?) iterations

this means for a 30 port switch, the worst-case number of iterations is about 27,000

e But, time complexity is not the biggest problem

- we may be able to overcome this with hardware optimizations
- the bigger problem is that it is hard to pipeline the max wt matching routine
- that is, if the decisions made in each iteration about which edges to include
in the final matching were binding, then the iterations can be executed serially
- but, the augmenting path routine used in max wt matching algorithms prevents this

i.e. we will have to backtrack

- so the entire pipeline is held up while the matching for time slot n is decided

EE 384X Packet Switch Architectures

18

e This is easy to understand using an example of the opposite kind

- let's consider the “greedy maximum weight matching”; called iLQF
- given a weighted bipartite graph, in each iteration choose the heaviest edge
from the residual graph (break ties at random); you'll be done in N iterations
— the key point here is that future iterations do not disconnect currently chosen edges
— this is pipelineable

- the matching found by iLQF is maximal; and its weight > 0.5 X max wt matching

- annoyingly (or interestingly), iLQF does not give 100% throughput!

e Let's formalize this class of “greedy, maximal’ matchings which are
implmentation-friendly

essentially, most switch schedulers follow the “request-grant-accept” (RGA) routine

this requires an input (output) to rank all the outputs (inputs) from 1 to V

e.g. input ¢ ranks output j higher than output & if ¢;;(n) > gix(n)

given these ranking lists, run the “stable marriage” routine

- this is essentially the RGA routine

EE 384X Packet Switch Architectures 19

