
Active Queue Management

Rong Pan
Cisco System

EE384y
Spring Quarter 2006

2

Outline
• Queue Management

– Drop as a way to feedback to TCP sources
– Part of a closed-loop

• Traditional Queue Management
– Drop Tail

– Problems

• Active Queue Management
– RED

– CHOKe

– AFD

3

Queue Management: Drops/Marks
- A Feedback Mechanism To Regulate End TCP Hosts

• End hosts send TCP traffic -> Queue size

• Network elements, switches/routers, generate
drops/marks based on their queue sizes

• Drops/Marks: regulation messages to end hosts

• TCP sources respond to drops/marks by cutting
down their windows, i.e. sending rate

4

TCP+Queue Management
- A closed-loop control system

�

Queue
Management

_

N

C

_

�
q

Time
Delay

+

+

-

1

W/R

p

0.5

+

5

Drop Tail
- problems

• Lock out

• Full queue

• Bias against bursty traffic

• Global synchronization

6

Max Queue Length

Tail Drop Queue Management
Lock-Out

7

Tail Drop Queue Management
Full-Queue

• Only drop packets when queue is full
– long steady-state delay

8

Max Queue Length

Bias Against Bursty Traffic

9

Max Queue Length

Tail Drop Queue Management
Global Synchronization

10

• Drop from front on full queue

• Drop at random on full queue

� both solve the lock-out problem
� both have the full-queues problem

Alternative Queue
Management Schemes

11

• Solve tail-drop problems
– no lock-out behavior
– no global synchronization
– no bias against bursty flow

• Provide better QoS at a router
– low steady-state delay
– lower packet dropping

Active Queue Management
Goals

12

Random Early Detection
(RED)

yes

Drop the new packet

end

Admit packet with
a probability p

end

AvgQsize > Maxth?

yes

Arriving packet

no

Admit the
new packet

end

AvgQsize > Minth? no

13

RED Dropping Curve

minth maxth

0

Average Queue Size

D
ro

p
P

ro
ba

bi
lit

y 1

maxp

14

Effectiveness of RED
- Lock-Out & Global Synchronization

• Packets are randomly dropped

• Each flow has the same probability of being

discarded

15

• Drop packets probabilistically in anticipation
of congestion
– not when queue is full

• Use qavg to decide packet dropping
probability: allow instantaneous bursts

Effectiveness of RED
- Full-Queue & Bias against bursty traffic

16

What QoS does RED
Provide?

• Lower buffer delay: good interactive service
– qavg is controlled to be small

• Given responsive flows: packet dropping is
reduced
– early congestion indication allows traffic to throttle

back before congestion

• Given responsive flows: fair bandwidth allocation

17

Bad News - unresponsive end hosts

tcp

tcp
udp

udp

udp

tcp

tcp

Connectionless; Best-Effort

The Internet

18

Scheduling & Queue
Management

• What routers want to do?
– isolate unresponsive flows (e.g. UDP)

– provide Quality of Service to all users

• Two ways to do it

– scheduling algorithms:

e.g. FQ, CSFQ, SFQ

– queue management algorithms:

e.g. RED, FRED, SRED

19

FQ vs. RED

• Hard/Expensive to
implement

• Isolation from non-
adaptive flows

FQ

RED

• No isolation from
non-adaptive flows

• Easy to implement

20

Active Queue Manament With
Enhancement to Fairness

• Provide isolation from unresponsive flows
• Be as simple as RED

FIFO

21

yes

Drop the new packet

end

Admit packet with
a probability p

end

AvgQsize > Maxth?

yes

RED
Arriving packet

no

Admit the
new packet

end

AvgQsize > Minth? no

yes

no

Drop both
matched packets

end

Draw a packet at
random from queue

Flow id same as
the new packet id ?

yes

Drop the new packet

end

Admit packet with
a probability p

end

no
AvgQsize > Maxth?

no

CHOKe

22

Random Sampling from
Queue

• A randomly chosen packet more likely
from the unresponsive flow

• Adversary can’t fool the system

UDP flow

23

Comparison of Flow ID

• Compare the flow id with the incoming packet

– more acurate

– Reduce the chance of dropping packets from a TCP-
friendly flows.

24

Dropping Mechanism

• Drop packets (both incoming and matching
samples)

– More arrival -> More Drop

– Give users a disincentive to send more

25

1Mbps

10MbpsS(2)

S(m)

S(m+n)

m TCP
Sources

S(m+1)

n UDP
Sources

D(2)

D(m)

D(m+n)

m TCP
Sinks

D(m+1)

n UDP
Sinks

D(1)

10Mbps

Simulation Setup
S(1)

26

Network Setup Parameters

� 32 TCP flows, 1 UDP flow

� All TCP’s maximum window size = 300

� All links have a propagation delay of 1ms

� FIFO buffer size = 300 packets

� All packets sizes = 1 KByte

� RED: (minth,maxth) = (100,200) packets

27

32 TCP, 1 UDP (one sample)

0

200

400

600

800

1000

100 1000 10000
UDP Arrival Rate (Kbps)

T
hr

o
ug

hp
ut

 (K
b

ps
) UDP Throughput (RED)

UDP Throughput (CHOKe)
Avg. TCP Throughput (CHOKe)

23.0%

74.1%

99.6%

28

32 TCP, 5 UDP (5 samples)

0

300

600

900

1200

1500

100 1000 10000
Total UDP Arrival Rate (Kbps)

Th
ro

ug
hp

ut
 (K

bp
s)

CHOKe(one sample):Total UDP Throughput
CHOKe(one sample):Total TCP Throughput
CHOKe with 5 samples: Total UDP Throughput
CHOKe with 5 samples: Total TCP Throughput

29

How Many Samples to
Take?

minth
Maxth

R1R2Rk

� Different samples for different Qlenavg

– # samples ↓ when Qlenavg close to minth

– # samples↑ when Qlenavg close to maxth

avg

30

6.6%

38.3%
61.1%

89.7%

99.3%0

300

600

900

1200

100 1000 10000
Total UDP Arrival Rate (Kbps)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Total UDP Throughput

Total TCP Throughput

32 TCP, 5 UDP (self-
adjusting)

31

Analytical Model

discards from the queue

permeable tube
with leakage

32

Fluid Analysis

� N: the total number of packets in the buffer

� Li(t): the survial rate for flow i packets

Li(t)δt - Li(t +δt)δt = λi δt Li(t)δt /N

- dLi(t)/dt = λi Li(t) N

Li(0) = λi (1-pi)

Li(D) = λi (1-2pi)

33

Model vs Simulation
- multiple TCPs and one UDP

0
50

100
150
200
250
300
350

0.1 1 10
Arrival Rate

T
hr

ou
gh

pu
t

fluid model
CHOKe ns simulation

1/(1+e)

34

Fluid Model
- Multiple samples

Li(t)δt - Li(t +δt)δt = Mλi δt Li(t)δt /N

- dLi(t)/dt = Mλi Li(t) N

Li(0) = λi (1-pi)M

Li(D) = λi (1-pi)M - Mλi pi

� Multiple samples are chosen

35

Two Samples
- multiple TCPs and one UDP

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2
UDP Arrival Rate(Mbps)

U
D

P
 T

hr
ou

gh
pu

t(
K

bp
s)

NS Simulation
Fluid Model

36

Two Samples
- multiple TCPs and two UDP

0

40

80

120

160

200

0 0.5 1 1.5 2

UDP Arrival Rate(Mbps)

U
D

P
 T

hr
ou

gh
pu

t(
K

bp
s)

NS Simulation
Fluid Model

37

What If We Use a
Small Amount of

State?

38

AFD: Goal

• Approximate equal bandwidth allocation
– Not only AQM, approximate DRR scheduling

– Provide soft queues in addition to physical
queues

• Keep the state requirement small

• Be simple to implement

39

AFD Algorithm: Details
(Basic Case: Equal Share)

Di = Drop Probability for Class i

Qref
1-Di

Di

QlenArriving Packets

If Mi > Mfair : Di > 0 such that

Mi (1-Di) = Mfair

If Mi ≤≤≤≤ Mfair : No Drop (Di = 0)

Mi = Arrival estimate
for Class i

(Bytes over interval Ts)

Mfair = Mfair - a (Qlen - Qref)
+ b (Qlen_old - Qref)

Fair Share

Class i

40

AFD Algorithm: Details
(General Case)

Di = Drop Probability for Class i

Qref
1-Di

Di

QlenArriving Packets

If Mi > Mfair : Di > 0 such that
Mi (1-Di) = F(Mfair,Mini,Maxi,Wi, …)

If Mi ≤≤≤≤ F(Mfair,Mini,Maxi,Wi, …): No Drop (Di = 0)

Mi = Arrival estimate
for Class i

(Bytes over interval Ts)

Mfair = Mfair - a (Qlen - Qref)
+ b (Qlen_old - Qref)

Fair Share

Class i

41

Not Per-Flow State

Fraction of flows

• State requirement on the order of # of unresponsive flows

42

AFD Solution: Details

• Based on 3 simple mechanisms
– estimate per “class” arrival rate

• counting per “class” bytes over fixed intervals (Ts)
• potential averaging over multiple intervals

– estimate deserved departure rate (so as to achieve
the proper bandwidth allocation for the class)

• Observation and averaging of queue length as
measure of congestion

• Functional definition of “fair share” based on
fairness criterion

– perform probabilistic dropping (pre-enqueue) to drive
arrival rate to equal desired departure rate

43

Mixed Traffic
with Different Levels of Unresponsiveness

0

100

200

300

400

500

RED CHOKe AFD

Th
ro

ug
hp

ut
 (k

bp
s)

44

Drop Probabilities
(note differential dropping)

0

0.05

0.1

0.15

0.2

0.25

0.3

RED CHOKe AFD

D
ro

p
Pr

ob
ab

ili
ty

45

Different Number of TCP
Flows in Each Class

C
la

ss
 1

5 TCP Flows

0 50 150 200100 time

C
la

ss
 2

10 TCP Flows

0 50 150 200100 time

C
la

ss
 3

15 TCP Flows

0 50 150 200100 time

C
la

ss
 4

20 TCP Flows

0 50 150 200100 time

46

Different Class Throughput
Comparison

47

Queue Length

48

Mfair

49

AFD Implementation Issues

• Monitor Arrival Rate

• Determine Drop Probability

• Maximize Link Utilization

50

Arrival Monitoring

• Keep a counter for each class
– Count the data arrivals (in bytes) of each

class in 10ms interval: arvi

• Arrival rate of each class is updated every
10ms
– mi = mi(1-1/2c)+arvi
– c determines the average window

51

Implementing the Drop
Function

• If Mi ≤ Mfair then Di = 0

• Otherwise, rewrite the drop function as

• Suppose we have predetermined drop levels, find

the one such that Di* Mi = (Mi – Mfair)

52

Implementing the Drop
Function

• ���������	
��������	�
������
���	
������

0.0 1.0

Di

���������������	�����
��������	��� 	���!�

������

0.375 0.406

• ���������������"��#����#����#��$

53

FQ

RED

Simplicity

F
ai

rn
es

s

AFD - Summary

• Equal share is approximated in a wide variety of settings

• The state requirement is limited

CHOKe
AFD

Ideal

54

Summary

• Traditional Queue Management
– Drop Tail, Drop Front, Drop Random
– Problems: lock-out, full queue, global

synchronization, bias against bursty traffic

• Active Queue Management
– RED: can’t handle unresponsive flows
– CHOKe: penalize unresponsive flows
– AFD: provides approximate fairness with

limited states

