Active Queue Management

Rong Pan
Cisco System

EE384y
Spring Quarter 2006

Outline

« Queue Management
— Drop as a way to feedback to TCP sources
— Part of a closed-loop

o Traditional Queue Management
— Drop Tall
— Problems

* Active Queue Management
— RED
— CHOKe
— AFD

Queue Management: Drops/Marks
= A Feedback Mechanism To Regulate End TCP Hosts

End hosts send TCP traffic -> Queue size

Network elements, switches/routers, generate
drops/marks based on their queue sizes

Drops/Marks: regulation messages to end hosts

TCP sources respond to drops/marks by cutting
down their windows, i.e. sending rate

TCP+Queue Management
- A closed-loop control system

Management

Drop Tall

- problems

Lock out

Full queue
Bias against bursty traffic

Global synchronization

Tail Drop Queue Management
Lock-Out

Max Queue Length

Tail Drop Queue Management
Full-Queue

* Only drop packets when queue is full
— long steady-state delay

Bias Against Bursty Traffic

Max Queue Length

Tail Drop Queue Management
Global Synchronization

Max Queue Length

Alternative Queue
Management Schemes

* Drop from front on full queue

e Drop at random on full queue

= poth solve the lock-out problem
< pboth have the full-queues problem

Active Queue Management
Goals

e Solve tail-drop problems
— no lock-out behavior
— no global synchronization
— no bias against bursty flow

 Provide better QoS at a router

— low steady-state delay
— lower packet dropping

Random Early Detection
(R{=1D)

i Arriving packet

AvgQsize > Min,,?

Admit the

new packet
AvgQsize > Max,?
end lyes

Admit packet with Drop the new packet
a probability p

end
end

RED Dropping Curve

Average Queue Size

Effectiveness of RED
- Lock-Out & Global Synchronization

 Packets are randomly dropped

 Each flow has the same probability of being
discarded

Effectiveness of RED

- Full-Queue & Bias against bursty traffic

« Drop packets probabllistically in anticipation
of congestion

— not when queue is full

 Use g, to decide packet dropping
probabllity: allow instantaneous bursts

What QoS does RED
Provide?

* Lower buffer delay: good interactive service

— Qavg IS controlled to be small

e Given responsive flows: packet dropping is
reduced

— early congestion indication allows traffic to throttle
back before congestion

e Given responsive flows: fair bandwidth allocation

Bad News - unresponsive end hosts

Connectionless; Best-Effort

Scheduling & Queue

Management

 What routers want to do?
— Isolate unresponsive flows (e.g. UDP)
— provide Quality of Service to all users

« Two ways to do it

— scheduling algorithms:
e.g. FQ, CSFQ, SFQ

— queue management algorithms:
e.g. RED, FRED, SRED

FQ vs. RED

Isolation from non-
adaptive flows

Hard/Expensive to
Implement

No isolation from
non-adaptive flows

Easy to implement

Active Queue Manament With
Enhancement to Fairness

* Provide isolation from unresponsive flows
 Be as simple as RED

@5(0)\G

i Arriving packet

no AvgQsize > Min,,,? -

Admit the Draw a packet at
new packet random from queue

Flow id same as
the new packet id ?

Drop both AvgQsize > Max,?
matched packets

end Admit packet with Drop the new packet
a probabillity p

end

Random Sampling from
Queue

- A randomly chosen packet more likely
from the unresponsive flow

- Adversary can'’t fool the system

Comparison of Flow ID

« Compare the flow id with the incoming packet

— more acurate

— Reduce the chance of dropping packets from a TCP-
friendly flows.

Dropping Mechanism

* Drop packets (both incoming and matching
samples)

— More arrival -> More Drop
— Give users a disincentive to send more

Simulation Setup

~S(1)
mTCcp (138 \ 10Mbps

sSources

Network Setup Parameters

32 TCP flows, 1 UDP flow

TCP’s maximum window size = 300
links have a propagation delay of 1ms
~O buffer size = 300 packets

packets sizes = 1 KByte
RED: (miny,,max,,) = (100,200) packets

32 TCP, 1 UDP (one sample)

—8— Avg. TCP Throughput (CHOKe)

~ 1000
UDP Arrival Rate (Kbps)

32 TCP, 5 UDP (5 samples)

Total UDP Arrival Rate (Kbps)

How Many Samples to
Take?

Bl e

. Different samples for different Qlen,,,

- # samples / when Qlen_,, close to min,

avg

- # samples 7 when Qlen_,, close to maxy,

avg

32 TCP, 5 UDP (self-
adjusting)

—e—Total TCP Throughput

o
<
(@))
>
@)
—
L
I_

Total UDP Arrival Rate (Kbps)

Analytical Model

.» permeable tube
with leakage

Fluid Analysis

« N: the total number of packets in the buffer
« Li(t): the survial rate for flow | packets

L& - Lt +&) & = A & L{H)& /N
- dL(t)y/dt = A L(t) N
L(0) = A (1-p))
(D) = A (1-2p;)

Model vs Simulation
- multiple TCPs and one UDP

—— fluid model ‘
I CHOKe ns simulation N

0.1 1 10
Arrival Rate

Fluid Model

- Multiple samples

« Multiple samples are chosen

L({t)A& - Lt +X)a = VA & Li(t) & /N
- dL(t)/dt = MA, Li(t) N
L(0) = A (1-p;)
Li(D) = A (1-p;)" - VAP

Two Samples
- multiple TCPs and one UDP

NS Simulation
—— Fluid Model

<
)
5
S
c
I—
al
O
)

0.5 1 1.5
UDP Arrival Rate(Mbps)

Two Samples
- multiple TCPs and two UDP

00)
o

NS Simulation
—— Fluid Model

AN
o

(@)

>
o
L
—
al
|
)

o

0.5 1 1.5
UDP Arrival Rate(Mbps)

What If We Use a
Small Amount of

State?

AFD: Goal

o Approximate equal bandwidth allocation
— Not only AQM, approximate DRR scheduling

— Provide soft queues in addition to physical
gueues

o Keep the state requirement small
e Be simple to implement

AFD Algorithm: Detalils
(Basic Case: Equal Share)

Di = Drop Probability for Class i
Arriving Packets Qlen

Qref

Mfair = Mfair - a (Qlen - Qref)
M. = Arrival estimate +b (Qlen_old - Qref)
for Class i

(Bytes over interval T,) Fair Share

If M, < Mfair : No Drop (D, = 0)
If M. > Mfair : D,> 0 such that

M, (1-D;) = Mfair

AFD Algorithm: Detalils
(General Case)

Di = Drop Probability for Class i
Arriving Packets Qlen

e —

1-D,
—_—
- Qref
Classi ——* \)
Di

Mfair = Mfair - a (Qlen - Qref)
M. = Arrival estimate + b (Qlen_old - Qref)
for Class |

(Bytes over interval T,) Fair Share

If M, < F(Mfair,Min;,Max;,W,, ...): No Drop (D, = 0)

If M. > Mfair : D,> 0 such that
M, (1-D;) = F(Mfair,Min; Max;,W,, ...)

Not Per-Flow State

J“-
/
;
;
/ :I
A
;
3 -
/ :
1
xr ‘l
LA
/ J
;
;
J -
£ i
r a
r 1
£
;
;
;
;
;

e
2
=,
o
s
o
2
T
o
| o
L
2
T
=
=
=
)

Trace 1| ———
Trace 2
Trace{j

0o L— e B
1e-06 1e-05 0.01 0.1

Fraction of flows

State requirement on the order of # of unresponsive flows

AFD Solution: Detalls

e Based on 3 simple mechanisms
— estimate per “class” arrival rate
e counting per “class” bytes over fixed intervals (T,)
« potential averaging over multiple intervals

— estimate deserved departure rate (so as to achieve
the proper bandwidth allocation for the class)

« Observation and averaging of queue length as
measure of congestion

e Functional definition of “fair share” based on
fairness criterion

— perform probabilistic dropping (pre-enqueue) to drive
arrival rate to equal desired departure rate

IC

4=

©
—
e,

IX€E

b5 a SRS RAAANSY
b 555555500550 950055Y
RN

W
with Different Levels of Unresponsiveness

-
S
4

(sdgy) indysnoay,

Drop Probabilities
(note differential dropping)

S
(\)
|

S
e
|

)
N
”‘:
:5
<
e
o
St
al
Q.
o
Y
-

55655555 55555559%

Different Number of TCP
Flows In Each Class

10 TCP Flows

0 50 100 150 200 time

15 TCP Flows
|

0 50 100 150 200

Different Class Throughput
Comparison

SMbps Link, Equal Weight, Different Number of TCP Flows in Each Class

Class 3: 15 Flows

L
=3
b
-
e
=
= |
=
=
| -
=
}_
o0
o
=
€3

A
150
Simulation Time (Sec)

Queue Length

140000

120000

100000

W
L
=
-
m
&=
&
o
C
L
=
1]
=
@
=
o

150
simulation Time (sec)

140000

120000

100000

150

Simulation Time (sec)

AFD Implementation Issues

 Monitor Arrival Rate
 Determine Drop Probability

e Maximize Link Utilization

Arrival Monitoring

« Keep a counter for each class

— Count the data arrivals (in bytes) of each
class in 10ms interval: arv;

* Arrival rate of each class is updated every
10ms

— m; = my(1-1/2°)+arv;
— ¢ determines the average window

Implementing the Drop

Function
e If M, < Mfairthen D,= 0

* Otherwise, rewrite the drop function as

e Suppose we have predetermined drop levels, find

the one such that D* M, = (M, — Mfair)

Implementing the Drop
Function

* Drop levels are: 1/32, 1/16, 3/32...

* Suppose m; = 100, m,. = 62.0 => D, = 0.380,

We choose the higher
value using binary

AFD - Summary

| @ @ Ideal

%))
n
<)
c
—
©
LL

Simplicity

 Equal share is approximated in a wide variety of settings

* The state requirement is limited

Summary

 Traditional Queue Management
— Drop Tail, Drop Front, Drop Random

— Problems: lock-out, full queue, global
synchronization, bias against bursty traffic

o Active Queue Management
— RED: can’t handle unresponsive flows
— CHOKe: penalize unresponsive flows

— AFD: provides approximate fairness with
limited states

