
 1

Stability Analysis of MNCM Class of Algorithms
And Two More Problems!

EE384Y Project Final Report
By Nima Asgharbeygi
June 6, 2003

Table of Contents

1 Background and Motivation 2

2 Problem Statement 2

3 Stability Results for MNCM 3

3.1 General Traffic 3

3.2 IID Bernoulli 3

3.3 Uniform 5

3.4 Issues with Fluid Model 5

4 Fluid Analysis of LPF 6

4.1 Approach 6

4.2 Stability of Fluid Policy 6

4.3 Equivalency of Fluid and Discrete Models 7

4.4 Stability of LPF 8

5 iSLIP Random 9

5.1 Introduction 9

5.2 Approach 10

6 Summary 12

7 References 12

 2

1 Background and Motivation

In a recent work presented in INFOCOM 2003, Tabatabaee and Tassiulas [1] introduced
a new class of scheduling algorithms for IQ switches with no speedup, called maximum
node containing matching (MNCM). MNCM class is defined as below:

Definition: A maximal size matching algorithm m belongs to MNCM class if and only if
m contains all nodes with maximum weight.

Weight of a node is defined to be the summation of its corresponding VOQ occupancies.
We number ports of the switch from 1 to 2N where index sets {1,…,N} and
{N+1,…,2N} corresponds to input and output ports respectively. Then the port weights
are,

(,):(,)
() ()k ij

i j i j k
B n Z n

→

= ∑ (1)

Where {1,..., 2 }k N∈ and the notation (,)i j k→ means link (,)i j is associated with port
k. They also extended the fluid model for the links of an input buffered switch given in
[3] to derive the port based fluid model. Then they used function (())f B t defined from

2NR R→ as,
 1 2(()) max{ (),..., ()}Nf B t B t B t= (2)

to be the Lyapunov function, proved that the port based fluid model is weakly stable and
concluded that MNCM class of algorithms is efficient under general traffic (satisfying
law of large numbers).
MNCM is actually very interesting in the sense that it includes LPF algorithm (because it
finds a min-max matching) with complexity 3()O N , as well as simpler algorithms like
MFM with complexity 2.5()O N .
But a recent counter example invalidated efficiency of MNCM under general traffic!

2 Problem Statement

The first problem is to examine the performance of MNCM algorithms with a discrete
model, i.e. assuming IID Bernoulli arrivals.
I would also like to realize the issues with the fluid model proof which result in an invalid
conclusion.
After this, I’ll try to find another generalization on LPF algorithm; a class of efficient
algorithms containing LPF. This might help deriving some statements about delay
performance and behavior of iterative algorithms such as iLPF and maximum sorted
matching (MSM).

 3

3 Stability Results for MNCM

3.1 General Traffic

A counter-example produced by Da Chuang showed that MNCM class of algorithms is
not as efficient as claimed in [1]. This is a periodic deterministic arrival pattern which
makes the queue occupancies grow indefinitely. One period of the arrival pattern is
shown in figure 1.
Matchings identified by underlies are obviously in MNCM. The same scheduling policy
will apply to later periods of traffic pattern because all the node weights are equal at the
end of each period. Therefore at the end of time slot 6n, the occupancy of queues will be,

0

0
0

n n
n n

n n

 
 
 
 
 

Time Slot 1 2 3 4 5 6
Arrival
Pattern

 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0
 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1

Queues
Before
Departure

 1 0 0 1 1 0 2 0 0 1 1 0 1 2 0 2 1 0
 1 0 0 0 0 1 1 0 0 2 0 0 1 0 1 1 0 1
 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 2

Queues
After
Departure

0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1

Figure 1 Counter-example details.

3.2 IID Bernoulli

I tried Lyapunov approach to get some results for discrete case. But while trying to
upper-bound the increase in Lyapunov function (((1)) (()))f B n f B n+ − , I realized the
inherent weakness in the definition of MNCM. So I moved toward simulations and
implemented MFM algorithm using MATLAB. The code simply performs the following:

1. Find a maximum size matching 1M on the graph induced by all input nodes with
max weight (this will contain all max-weight input nodes).

2. Find a maximum size matching 2M on the graph induced by all output nodes with
max weight (this will contain all max-weight output nodes).

3. Combine 1M and 2M to find a matching M containing all max-weight nodes.
4. Add remaining possible matches to M to make it maximal.

My simulations show that MFM doesn’t achieve 100% throughput even for IID Bernoulli
arrival. Figure 2 is a plot of delay performance for a 4 4× switch with uniform IID
Bernoulli arrival operating under MFM scheduling algorithm. The length of simulation

 4

was 100,000 time slots. The algorithm is certainly unstable for an arrival rate of 0.8ρ =
(average backlog increases linearly over time).

Figure 2 Average Delay vs. Throughput for MFM algorithm.

Inefficiency is clearly observable by means of an analytical counter-example. Consider
the following non-uniform arrival rate matrix and corresponding backlog matrix:

.5(1) 13

.5(1) 23

.5(1) .5(1) 31 32 33

0 0 0 0 ()
0 0 , 0 0 ()

() () ()

q n
Q q n

q n q n q n

α β

α β

α β α β β

− −

− −

− − − −

   
   Λ = =   
   
   

 (3)

where 0 ,α β≤ <1 . Now consider this scheduling algorithm:

Algorithm: Serve 33q only if 31 32 13 23() () () () 0q n q n q n q n= = = = ; otherwise serve some
other non-empty VOQ’s to maximize weight of the matching.

It’s easy to see that the generated matching is always in MNCM with given arrival
matrix. That’s because when 33() 0q n ≠ , the max-weight node is input 3, output 3, or both.
Now note that 33 31 32 13 23Rate of service to Pr{ () () () () 0}q q n q n q n q n= = = = =

[] []2 Pr{no arrival to these VOQ's at time } 1 .5(1) . 1 (1)n α β α β≤ = − − − − − −

 21 (1) .()
4

α β α β= + + + (4)

 5

The last quantity in equation (4) can be less thanβ , e.g. with 0.1, 0.3α β= = , and hence

33q will become unstable.

3.3 Uniform

A similar counter-example for uniform arrival pattern can be stated as below:

 11 12

21 22

() ()
,

() ()
q n q n

Q
q n q n

β β
β β

  
Λ = =   

   
 (5)

Algorithm: Don’t serve 11q and 22q if 12 () 0q n ≠ or 21() 0q n ≠ .

11 22 12 21Rate of service to and Pr{ () () 0}q q q n q n= = =
2

12 21Pr{no arrival to and at time } (1)q q n β≤ = − (6)

And this can be less than arrival rate to 11q and 22 (2)q β , say for 0.4β = .

3.4 Issues with Fluid Model

Now the question arises here is why the fluid model proof which seems to be legitimate
gives a wrong result. The issue lies in the argument they gave to take the derivative of the
Lyapunov function. In [1] they discus that:

“Due to continuity properties of B(t), for every 0 0t ≥ there exists some 0δ ≥ such that for
all 0 0[, [t t t δ∈ + there is always one common index 0 0(,)q t t δ+ such that

0 0(,)(()) ()q t tf B t B tδ+= .”

That means during an interval of 0δ ≥ , the maximum weight node keeps being
maximum. But this is wrong! An interval of length 0δ ≥ in continuous time, corresponds
to an interval of arbitrarily large length (as r rδ →∞) in discrete time domain. This is
not guaranteed by MNCM. Actually the index of maximum weight node can have
arbitrarily large rate of change over discrete time. This can be easily seen using a periodic
arrival pattern example.
Overall, the fluid model proved to be weakly stable, doesn’t represent the original
discrete system, and hence the proof is invalid.

 6

4 Fluid Analysis of LPF

After finishing the first problem, I got interested in finding a fluid model proof for
stability of LPF under general traffic.

4.1 Approach

The discontinuity in definition of link weights in LPF algorithm makes it difficult to
derive a direct fluid proof and to justify the equivalency of fluid and discrete systems. So
in this way, some innovative ideas might be helpful. One idea is to find a series of
efficient algorithms whose limiting point is LPF algorithm. Then it may be easier to
prove stability and equivalency at each point of the series of algorithms.
I define a more general algorithm fLPF as below:

fLPF Algorithm: Apply MWM algorithm on the following link weights to find the
scheduling matching at time n:

 () (()). () ()D
ij ij ik kj

k k
W n f Q n Q n Q n 

= + 
 
∑ ∑ (7)

Where ()f Q is an increasing function and (()) 0 if () 0.ij ijf Q n Q n= =

Note that standard LPF is included in this class with { 0}() 1

ijij Qf Q >= . Having defined a

series of functions converging to { 0}1
ijQ > , we will have a series of algorithms converging to

LPF.

4.2 Stability of Fluid Policy

I’ll define the fluid model link weights to be:

 () (()). () ()F
ij ij ik kj

k k

W t g Z t Z t Z t 
= + 

 
∑ ∑ (8)

Here I’m using function ()g ⋅ instead of ()f ⋅ . This is to provide enough flexibility in order
to make the fluid model and discrete model equivalent by choosing an appropriate
function ()g ⋅ (discussed later). Now we have a theorem.

Theorem 1: The fluid model based on weights ()F

ijW t is weakly stable under MWM
policy if () and . () , 0g z A z g z B z′≤ ≤ ∀ ≥ for some constants , 0.A B ≥

Proof: Let’s define our Lyapunov function to be () (), ()FL t Z t W t= >< . Taking the
derivative we have:

 () (), () (), () ,
F

FL t Z t W t Z t W t= > + >< <
i i i

 (9)

 7

, ,

, ,

(), () () () () () () ()

() () () ()

() (), ()

F

ij ij ik kj ij ij ij ik kj
i j k k i j k k

ij ik kj ij ik kj
i j k k i j k k

F

t W t Z g Z Z t Z t Z Z g Z Z t Z t

A Z Z t Z t B Z Z t Z t

A B Z t W t

Z    ′ ′ ′ ′>= + + +   
   

   ′ ′ ′≤ + + +   
   

= + >

<

<

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

i

i

(10)

But the algorithm applies MWM based on weights ()FW t , so we have:

 (), () 0FZ t W t >≤<
i

 (11)

 (15), (16), (17) () (1) (), () 0FL t A B Z t W t⇒ ≤ + + >≤<
i i

 (12)
So the fluid model is weakly stable.

4.3 Equivalency of Fluid and Discrete Models

Now we should choose a function ()g ⋅ such that the fluid policy and the discrete policy
always make the same decision, for any set of queue occupancy ijQ ’s and their

corresponding ijZ ’s. That means the same matching *π must be the maximum weight
matching for both models:

* *(,) (,)(,) (,)

D D F F
ij ij ij ij

i j i ji j i j

W W W W
π ππ π∈ ∈∈ ∈

≥ ⇔ ≥∑ ∑ ∑ ∑ (13)

Or,

* *(,) (,)(,) (,)

lim (). lim ().ij kj ij kjD D ik ik
ij ij r ri j k k i j k ki j i j

Q Q Q QQ QW W g g
r r r r r rπ ππ π

→∞ →∞
∈ ∈∈ ∈

   
≥ ⇔ + ≥ +   

   
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

This will be satisfied if we have:

 lim () ()ij
ijr

Q
g f Q

r→∞
= (14)

Now again the trick is to find a series of functions that satisfies (19) for every r, and also
possibly for .r →∞ If I choose:
 () ()rg z f rz� (15)
Then (19) based on ()rg ⋅ holds for every value of r. But our fluid model corresponds
to r →∞ , so if (19) remains valid for r →∞ (() ()rg g∞⋅ → ⋅) it means that the
equivalency of (19) holds between our fluid model (based on ()g∞ ⋅) and the discrete
model. For (19) to remain valid as r →∞ , uniform convergence of rg to g∞ suffice.

Now as a good example, suppose:
 () 1 for 0 and constant 0aQf Q e Q a−= − ≥ > (16)
 () 1 for 0arz

rg z e z−⇒ = − ≥ (17)

 8

Thus equivalency (19) holds for this choice of and (0)rf g r∀ > . It’s easy to show that
convergence of rg g∞→ is uniform, therefore (19) also holds for and f g∞ which
represents our fluid model. It’s interesting that g∞ does not depend on value of a , i.e. the
fluid model is the same for any choice of constant a . I believe it’s also possible to argue
(19) directly for and f g∞ without any need for limit and convergence issues.
Now note that:
 1

0 0 0
lim . ' () lim . ' () lim . arz

rz z z
r r

z g z z g z arz e e− −
∞→ → →

→∞ →∞

= = ≤ (18)

By theorem 1, this fluid model is weakly stable.

4.4 Stability of LPF

Again considering previous example for ()f ⋅ , note that this function converges to { 0}1 Q> as
a →∞ , and this is again a uniform convergence. By taking this limit, the weak stability
of the fluid model keeps valid (because g∞ would be the same and still (24) holds). But
we should argue the equivalency. A good intuition on this is that when a becomes larger
and larger, with fixed r, rg gets closer to g∞ under the same rate of convergence as when r
becomes larger. Therefore as a →∞ , the uniform convergence of rg to g∞ remains
uniform, which results in (19) being valid for fluid model of LPF (which is essentially the
same for any value of a).

 9

5 iSLIP Random

Parallel to previous problem, I was also working on iSLIP random and I wished to find
results on stability and convergence of this algorithm.

5.1 Introduction

iSLIP random [4] is an iterative scheduling algorithm operating on an IQ switch with
VOQs and is defined as below:

iSLIP Random: In each iteration, each input port selects one of it’s non empty VOQs
uniformly at random and requests that output. After all requests, each input selects one of
its incoming requests uniformly at random to grant. This specifies a sub matching to be
removed from the graph and then run the next iteration.

Essentially I want to consider just the first iteration of the algorithm to see what the
minimum average size of the generated matching is (compared with the size of a maximal
matching). That is to find:

all possible N N
graphs

[# of non-empty output bins]()
size of maximal matchingmin ENα

×

= (19)

1 2n = 1 2 3 1 1
2 3 4 2 8
⋅ ⋅ ⋅ =

1 2n = 2 3 1
3 4 2
⋅ =

1 2n = 3
4

1 2n = 1 2 3 1 1
2 3 4 2 8
⋅ ⋅ ⋅ =

 Input Degrees Probability of being empty

 Figure 3 first iteration of iSLIP

We show a non empty ijVOQ by an edge (,)i j in the N N× bipartite graph of the switch.
Let’s define:

 10

 Number of non empty VOQs at input in i= (20)

 ij
1{1 | VOQ is non empty} (call them output sets)j

i

O
n

−� (21)

 ()
j

j
p O

O pπ
∈
∏� (22)

Then obviously:

1

[# of empty output bins] ()
N

j
j

E Oπ
=

=∑ (23)

What I want to do is to find maximum value of the quantity in (29), given the size of
maximal matching. This maximizing is going to be done over all possible N N× bipartite
graphs.

5.2 Approach

First I’m going to find the maximum value of [# of empty output bins]E given a specific
vector of input degrees, 1 2(, ,...,)Nn n n . I’ll assume that the size of maximal matching in
the graph is N. It’ll become evident later why this assumption doesn’t produce any loss of
generality. To ensure the size of maximal matching, I’ll initially connect every input i to
output i (1, 2,...,i N=).
Now I introduce a greedy algorithm that with given input degree vector 1 2(, ,...,)Nn n n ,
finds an N N× bipartite graph which has maximum value of [# of empty output bins]E .
Greedy Algorithm: Pick an available input i with smallest in and connect it to a possible
output with smallest ()jOπ (i.e. add1 1 in− to set jO). Repeat until no available input
remains.

Theorem 2: Given 1 2(, ,...,)Nn n n and initially input i connected to output i (for all i), the
greedy algorithm maximizes E[# of empty output bins].

Proof of this theorem is based on the following lemma:

Lemma 1: If for fixed 1 2(, ,...,)Nn n n , a graph G with sets 1 2, ,..., NO O O maximizes

1
[# of empty output bins] ()

N

j
j

E Oπ
=

=∑ , then for any j and k:

 if () () () (), j j kc c
j k j k

k k j

S O O
S S S S

S O O
π π π π

∀ ⊆ −> ⇒ ≥ ∀ ⊆ −
 (24)

Proof: Suppose in graph G for some j and k, there is iS and jS that () ()j kS Sπ π> but

() ()c c
j kS Sπ π< . Now construct a new graph H by moving subset c

jS from jO to kO , and

moving subset c
kS from kO to jO (that’s always possible because we’ve eliminated common

 11

parts of jO and kO from consideration in these subsets, thus no conflicts will happen). Now
note that:
 () () 0j kS Sπ π− > (25)

 () () 0c c
k jS Sπ π− > (26)

 (). () (). () (). () (). ()c c c c
j k k j j j k kS S S S S S S Sπ π π π π π π π⇒ + > + (27)

The right quantity appears in H and the left quantity appears in G. Nothing else has
changed. So now the sum of products is increased in H, which is in contradiction with the
assumption that G maximizes [# of empty output bins]E .

Proof of Theorem 2: Let’s call the graph with maximum [# of empty output bins]E to be
G with output sets G

jO , and let H be the graph generated by greedy algorithm with output

sets H
jO . I’ll show that the output sets are identical in both graphs and hence H maximizes

[# of empty output bins]E too.
Suppose this is not true and for the first time during the execution of greedy algorithm, it
chooses a number 1 1ij ip n= − and adds it to H

jO , but ijp is not included in G
jO . So there is

G
jq O∈ which is not in H

jO . Certainly ijq p> because greedy algorithm always picks
smallest available numbers, and till here both algorithms have been the same. Also

ijp will appear somewhere in G, say in G
kO . But () ()G G

k jO Oπ π≥ , because greedy
algorithm always chooses the smallest subset to feed. By lemma 1, this is not possible in
G. Therefore greedy algorithm always makes the correct decision.

After this, we need to search for best 1 2(, ,...,)Nn n n to maximize

[# of empty output bins]E . This can be done using simulations based on greedy
algorithm, and then proving the results analytically.
I guess the vector (1, 2,...,)N is the maximum point, or at least it’s very close to
maximum for large N. Yet I have no proof for that and it’ll be added to the list of future
work! But if this is true, then we can conclude that:

•
1 1[# of empty output bins] ()

2 2
N NE N

N
α− +

≤ ⇒ ≥

• Hence iSLIP random with only one iteration would give 100% throughput with
speedup 4. That’s because any maximal matching algorithm gives 100% throughput
with speedup 2.

• There’s an upper bound on the average of maximum number of iterations needed for
iSLIP random to converge:

2[max # of iterations needed] log .E N≤

 12

6 Summary

What I did in this project:
• Work on MNCM algorithm which finally resulted in some counter examples, and

found out the issue with the fluid model proof.
• An innovative look into fluid model method to prove stability of LPF under general

traffic. Although I think the proof needs to be more detailed and accurate.
• A new way toward analyzing stability and convergence of iterative scheduling

algorithm. The problem is not finished yet.

Essentially, it was a unique experience for me to take the course. Failing the first problem
made me motivated enough to look for new problems, to try risky things and to be more
adventurous; what I’ve never experienced before; facing with challenging problems while
constrained in time.
Thank you dear TA’s and Professors for your great assistance.

7 References

[1] V. Tabatabaee, L. Tassiulas, “MNCM a new class of efficient scheduling algorithms

for input-buffered switches with no speedup”, INFOCOM ’03

[2] A. Mekkittikul, N. McKeown, “A Practical Scheduling Algorithm to Achieve 100%

Throughput in Input-Queued Switches”, INFOCOM ’98

[3] J.G. Dai, B. Prabhakar, ”The throughput of data switches with and without speedup”,

INFOCOM ’00

[4] "iSLIP: A Scheduling Algorithm for Input-Queued Switches", Nick McKeown , IEEE

Transactions on Networking, Vol 7, No.2, April 1999.

