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1   Background and Motivation 
 
In a recent work presented in INFOCOM 2003, Tabatabaee and Tassiulas [1] introduced 
a new class of scheduling algorithms for IQ switches with no speedup, called maximum 
node containing matching (MNCM). MNCM class is defined as below: 
 
Definition: A maximal size matching algorithm m belongs to MNCM class if and only if 
m contains all nodes with maximum weight. 
 
Weight of a node is defined to be the summation of its corresponding VOQ occupancies. 
We number ports of the switch from 1 to 2N where index sets {1,…,N} and 
{N+1,…,2N} corresponds to input and output ports respectively. Then the port weights 
are, 

( , ):( , )
( ) ( )k ij

i j i j k
B n Z n

→

= ∑     (1) 

 
Where {1,..., 2 }k N∈  and the notation ( , )i j k→  means link ( , )i j  is associated with port 
k. They also extended the fluid model for the links of an input buffered switch given in 
[3] to derive the port based fluid model. Then they used function ( ( ))f B t  defined from 

2NR R→  as, 
 1 2( ( )) max{ ( ),..., ( )}Nf B t B t B t=  (2) 
 
to be the Lyapunov function, proved that the port based fluid model is weakly stable and 
concluded that MNCM class of algorithms is efficient under general traffic (satisfying 
law of large numbers). 
MNCM is actually very interesting in the sense that it includes LPF algorithm (because it 
finds a min-max matching) with complexity 3( )O N , as well as simpler algorithms like 
MFM with complexity 2.5( )O N . 
But a recent counter example invalidated efficiency of MNCM under general traffic! 
 
 
2   Problem Statement 
 
The first problem is to examine the performance of MNCM algorithms with a discrete 
model, i.e. assuming IID Bernoulli arrivals. 
I would also like to realize the issues with the fluid model proof which result in an invalid 
conclusion. 
After this, I’ll try to find another generalization on LPF algorithm; a class of efficient 
algorithms containing LPF. This might help deriving some statements about delay 
performance and behavior of iterative algorithms such as iLPF and maximum sorted 
matching (MSM). 



 3

3   Stability Results for MNCM 

3.1   General Traffic 
 
A counter-example produced by Da Chuang showed that MNCM class of algorithms is 
not as efficient as claimed in [1]. This is a periodic deterministic arrival pattern which 
makes the queue occupancies grow indefinitely. One period of the arrival pattern is 
shown in figure 1. 
Matchings identified by underlies are obviously in MNCM. The same scheduling policy 
will apply to later periods of traffic pattern because all the node weights are equal at the 
end of each period. Therefore at the end of time slot 6n, the occupancy of queues will be, 

 
0

0
0

n n
n n

n n

 
 
 
 
 

 

 
Time Slot                   1             2             3             4             5             6 
Arrival  
Pattern 
 

               1 0 0       0 1 0       1 0 0       0 1 0       0 1 0       1 0 0 
               1 0 0       0 0 1       1 0 0       1 0 0       0 0 1       0 0 1 
               0 1 0       0 1 0       0 0 1       0 0 1       0 1 0       0 0 1 

Queues 
Before 
Departure 

               1 0 0       1 1 0       2 0 0       1 1 0       1 2 0       2 1 0 
               1 0 0       0 0 1       1 0 0       2 0 0       1 0 1       1 0 1 
               0 1 0       0 1 0       0 1 1       0 1 1       0 1 1       0 1 2 

Queues  
After 
Departure 

0 0 0       1 0 0       1 0 0       1 0 0       1 1 0       1 1 0       1 1 0 
0 0 0       0 0 0       0 0 0       1 0 0       1 0 0       1 0 0       1 0 1 
0 0 0       0 0 0       0 1 0       0 1 0       0 0 1       0 1 1       0 1 1 

Figure 1      Counter-example details. 

 
3.2   IID Bernoulli 
 
I tried Lyapunov approach to get some results for discrete case. But while trying to 
upper-bound the increase in Lyapunov function ( ( ( 1)) ( ( )))f B n f B n+ − , I realized the 
inherent weakness in the definition of MNCM. So I moved toward simulations and 
implemented MFM algorithm using MATLAB. The code simply performs the following: 

1. Find a maximum size matching 1M on the graph induced by all input nodes with 
max weight (this will contain all max-weight input nodes). 

2. Find a maximum size matching 2M on the graph induced by all output nodes with 
max weight (this will contain all max-weight output nodes). 

3. Combine 1M and 2M to find a matching M containing all max-weight nodes. 
4. Add remaining possible matches to M to make it maximal. 

My simulations show that MFM doesn’t achieve 100% throughput even for IID Bernoulli 
arrival. Figure 2 is a plot of delay performance for a 4 4× switch with uniform IID 
Bernoulli arrival operating under MFM scheduling algorithm. The length of simulation 
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was 100,000 time slots. The algorithm is certainly unstable for an arrival rate of 0.8ρ =  
(average backlog increases linearly over time). 

 
Figure 2       Average Delay vs. Throughput for MFM algorithm. 

 
Inefficiency is clearly observable by means of an analytical counter-example. Consider 
the following non-uniform arrival rate matrix and corresponding backlog matrix: 

 
.5(1 ) 13

.5(1 ) 23

.5(1 ) .5(1 ) 31 32 33

0 0 0 0 ( )
0 0 , 0 0 ( )

( ) ( ) ( )

q n
Q q n

q n q n q n

α β

α β

α β α β β

− −

− −

− − − −

   
   Λ = =   
   
   

 (3) 

where 0 ,α β≤ <1 . Now consider this scheduling algorithm: 
 
Algorithm: Serve 33q only if 31 32 13 23( ) ( ) ( ) ( ) 0q n q n q n q n= = = = ; otherwise serve some 
other non-empty VOQ’s to maximize weight of the matching. 
 
It’s easy to see that the generated matching is always in MNCM with given arrival 
matrix. That’s because when 33( ) 0q n ≠ , the max-weight node is input 3, output 3, or both.  
Now note that 33 31 32 13 23Rate of service to  Pr{ ( ) ( ) ( ) ( ) 0}q q n q n q n q n= = = = =  

[ ] [ ]2 Pr{no arrival to these VOQ's at time } 1 .5(1 ) . 1 (1 )n α β α β≤ = − − − − − −  

                              21 (1 ) .( )
4

α β α β= + + +    (4) 
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The last quantity in equation (4) can be less thanβ , e.g. with 0.1, 0.3α β= = , and hence 

33q will become unstable. 
 
 
3.3   Uniform 
 
A similar counter-example for uniform arrival pattern can be stated as below: 
 

 11 12

21 22

( ) ( )
,

( ) ( )
q n q n

Q
q n q n

β β
β β

  
Λ = =   

   
 (5) 

 
Algorithm: Don’t serve 11q and 22q if 12 ( ) 0q n ≠ or 21( ) 0q n ≠ . 
 

11 22 12 21Rate of service to  and Pr{ ( ) ( ) 0}q q q n q n= = =  
2

12 21Pr{no arrival to  and  at time } (1 )q q n β≤ = −           (6) 
 
And this can be less than arrival rate to 11q and 22 (2 )q β , say for 0.4β = . 
 
 
3.4   Issues with Fluid Model 
 
Now the question arises here is why the fluid model proof which seems to be legitimate 
gives a wrong result. The issue lies in the argument they gave to take the derivative of the 
Lyapunov function. In [1] they discus that: 
 
“Due to continuity properties of B(t), for every 0 0t ≥ there exists some 0δ ≥ such that for 
all 0 0[ , [t t t δ∈ + there is always one common index 0 0( , )q t t δ+ such that 

0 0( , )( ( )) ( )q t tf B t B tδ+= .” 

  
That means during an interval of 0δ ≥ , the maximum weight node keeps being 
maximum. But this is wrong! An interval of length 0δ ≥ in continuous time, corresponds 
to an interval of arbitrarily large length (  as r rδ →∞ ) in discrete time domain. This is 
not guaranteed by MNCM. Actually the index of maximum weight node can have 
arbitrarily large rate of change over discrete time. This can be easily seen using a periodic 
arrival pattern example. 
Overall, the fluid model proved to be weakly stable, doesn’t represent the original 
discrete system, and hence the proof is invalid. 
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4   Fluid Analysis of LPF 
 
After finishing the first problem, I got interested in finding a fluid model proof for 
stability of LPF under general traffic.  
 
 
4.1   Approach 
 
The discontinuity in definition of link weights in LPF algorithm makes it difficult to 
derive a direct fluid proof and to justify the equivalency of fluid and discrete systems. So 
in this way, some innovative ideas might be helpful. One idea is to find a series of 
efficient algorithms whose limiting point is LPF algorithm. Then it may be easier to 
prove stability and equivalency at each point of the series of algorithms. 
I define a more general algorithm fLPF as below: 

fLPF Algorithm: Apply MWM algorithm on the following link weights to find the 
scheduling matching at time n: 

 ( ) ( ( )). ( ) ( )D
ij ij ik kj

k k
W n f Q n Q n Q n 

= + 
 
∑ ∑  (7) 

Where ( )f Q is an increasing function and ( ( )) 0 if ( ) 0.ij ijf Q n Q n= =  
 
Note that standard LPF is included in this class with { 0}( ) 1

ijij Qf Q >= . Having defined a 

series of functions converging to { 0}1
ijQ > , we will have a series of algorithms converging to 

LPF.  
 
 
4.2   Stability of Fluid Policy 
 
I’ll define the fluid model link weights to be: 

 ( ) ( ( )). ( ) ( )F
ij ij ik kj

k k

W t g Z t Z t Z t 
= + 

 
∑ ∑  (8) 

Here I’m using function ( )g ⋅ instead of ( )f ⋅ . This is to provide enough flexibility in order 
to make the fluid model and discrete model equivalent by choosing an appropriate 
function ( )g ⋅  (discussed later). Now we have a theorem. 
 
Theorem 1: The fluid model based on weights ( )F

ijW t  is weakly stable under MWM 
policy if ( )  and . ( ) , 0g z A z g z B z′≤ ≤ ∀ ≥  for some constants , 0.A B ≥  
 
Proof: Let’s define our Lyapunov function to be ( )  ( ), ( )FL t Z t W t= >< . Taking the 
derivative we have: 

 ( )  ( ), ( ) ( ), ( ) ,
F

FL t Z t W t Z t W t= > + >< <
i i i

 (9) 
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, ,

, ,

( ), ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ), ( )

F

ij ij ik kj ij ij ij ik kj
i j k k i j k k

ij ik kj ij ik kj
i j k k i j k k

F

t W t Z g Z Z t Z t Z Z g Z Z t Z t

A Z Z t Z t B Z Z t Z t

A B Z t W t

Z    ′ ′ ′ ′>= + + +   
   

   ′ ′ ′≤ + + +   
   

= + >

<

<

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

i

i

(10) 

 
But the algorithm applies MWM based on weights ( )FW t , so we have: 

 ( ), ( ) 0FZ t W t >≤<
i

 (11) 

 (15), (16), (17) ( ) (1 ) ( ), ( ) 0FL t A B Z t W t⇒ ≤ + + >≤<
i i

 (12) 
So the fluid model is weakly stable.  
 
 
4.3   Equivalency of Fluid and Discrete Models 
 
Now we should choose a function ( )g ⋅ such that the fluid policy and the discrete policy 
always make the same decision, for any set of queue occupancy ijQ ’s and their 

corresponding ijZ ’s. That means the same matching *π must be the maximum weight 
matching for both models: 
 

* *( , ) ( , )( , ) ( , )

D D F F
ij ij ij ij

i j i ji j i j

W W W W
π ππ π∈ ∈∈ ∈

≥ ⇔ ≥∑ ∑ ∑ ∑  (13) 

Or,

* *( , ) ( , )( , ) ( , )

lim ( ). lim ( ).ij kj ij kjD D ik ik
ij ij r ri j k k i j k ki j i j

Q Q Q QQ QW W g g
r r r r r rπ ππ π

→∞ →∞
∈ ∈∈ ∈

   
≥ ⇔ + ≥ +   

   
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

This will be satisfied if we have: 

 lim ( ) ( )ij
ijr

Q
g f Q

r→∞
=  (14) 

Now again the trick is to find a series of functions that satisfies (19) for every r, and also 
possibly for .r →∞  If I choose: 
 ( ) ( )rg z f rz  (15) 
Then (19) based on ( )rg ⋅ holds for every value of r. But our fluid model corresponds 
to r →∞ , so if (19) remains valid for r →∞  ( ( ) ( )rg g∞⋅ → ⋅ ) it means that the 
equivalency of (19) holds between our fluid model (based on ( )g∞ ⋅ ) and the discrete 
model. For (19) to remain valid as r →∞ , uniform convergence of rg to g∞ suffice. 
 
Now as a good example, suppose: 
 ( ) 1    for 0 and constant 0aQf Q e Q a−= − ≥ >  (16) 
 ( ) 1  for 0arz

rg z e z−⇒ = − ≥  (17) 
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Thus equivalency (19) holds for this choice of and  ( 0)rf g r∀ > . It’s easy to show that 
convergence of rg g∞→ is uniform, therefore (19) also holds for  and f g∞ which 
represents our fluid model. It’s interesting that g∞ does not depend on value of a , i.e. the 
fluid model is the same for any choice of constant a . I believe it’s also possible to argue 
(19) directly for  and f g∞ without any need for limit and convergence issues. 
Now note that: 
 1

0 0 0
lim . ' ( ) lim . ' ( ) lim . arz

rz z z
r r

z g z z g z arz e e− −
∞→ → →

→∞ →∞

= = ≤  (18) 

By theorem 1, this fluid model is weakly stable. 
 
 
4.4   Stability of LPF 
 
Again considering previous example for ( )f ⋅ , note that this function converges to { 0}1 Q>  as 
a →∞ , and this is again a uniform convergence. By taking this limit, the weak stability 
of the fluid model keeps valid (because g∞ would be the same and still (24) holds). But 
we should argue the equivalency. A good intuition on this is that when a becomes larger 
and larger, with fixed r, rg gets closer to g∞ under the same rate of convergence as when r 
becomes larger. Therefore as a →∞ , the uniform convergence of rg to g∞ remains 
uniform, which results in (19) being valid for fluid model of LPF (which is essentially the 
same for any value of a ). 
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5   iSLIP Random 
 
Parallel to previous problem, I was also working on iSLIP random and I wished to find 
results on stability and convergence of this algorithm. 
 
5.1   Introduction 
 
iSLIP random [4] is an iterative scheduling algorithm operating on an IQ switch with 
VOQs and is defined as below: 
 
iSLIP Random: In each iteration, each input port selects one of it’s non empty VOQs 
uniformly at random and requests that output. After all requests, each input selects one of 
its incoming requests uniformly at random to grant. This specifies a sub matching to be 
removed from the graph and then run the next iteration. 
 
Essentially I want to consider just the first iteration of the algorithm to see what the 
minimum average size of the generated matching is (compared with the size of a maximal 
matching). That is to find: 

 
all possible N N
graphs

[# of non-empty output bins]( )
size of maximal matchingmin ENα

×

=  (19) 

 
 
 

1 2n =            1 2 3 1 1
2 3 4 2 8
⋅ ⋅ ⋅ =  

 
 

1 2n =            2 3 1
3 4 2
⋅ =  

 
 

1 2n =             3
4

 

 
 

1 2n =            1 2 3 1 1
2 3 4 2 8
⋅ ⋅ ⋅ =  

                        Input Degrees         Probability of being empty 
 
        Figure 3   first iteration of iSLIP 
 
 
We show a non empty ijVOQ by an edge ( , )i j in the N N× bipartite graph of the switch. 
Let’s define: 
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 Number of non empty VOQs at input in i=  (20) 

 ij
1{1 |  VOQ  is non empty}      (call them output sets)j

i

O
n

−  (21) 

 ( )
j

j
p O

O pπ
∈
∏  (22) 

Then obviously: 

 
1

[# of empty output bins] ( )
N

j
j

E Oπ
=

=∑  (23) 

What I want to do is to find maximum value of the quantity in (29), given the size of 
maximal matching. This maximizing is going to be done over all possible N N× bipartite 
graphs. 
 
5.2   Approach 
 
First I’m going to find the maximum value of [# of empty output bins]E given a specific 
vector of input degrees, 1 2( , ,..., )Nn n n . I’ll assume that the size of maximal matching in 
the graph is N. It’ll become evident later why this assumption doesn’t produce any loss of 
generality. To ensure the size of maximal matching, I’ll initially connect every input i to 
output i  ( 1, 2,...,i N= ). 
Now I introduce a greedy algorithm that with given input degree vector 1 2( , ,..., )Nn n n , 
finds an N N× bipartite graph which has maximum value of [# of empty output bins]E . 
Greedy Algorithm: Pick an available input i with smallest in and connect it to a possible 
output with smallest ( )jOπ (i.e. add1 1 in− to set jO ). Repeat until no available input 
remains. 
 
Theorem 2: Given 1 2( , ,..., )Nn n n and initially input i  connected to output i  (for all i ), the 
greedy algorithm maximizes E[# of empty output bins]. 
 
Proof of this theorem is based on the following lemma: 
 
Lemma 1: If for fixed 1 2( , ,..., )Nn n n , a graph G with sets 1 2, ,..., NO O O  maximizes 

1
[# of empty output bins] ( )

N

j
j

E Oπ
=

=∑ , then for any j and k: 

 if ( ) ( ) ( ) ( ), j j kc c
j k j k

k k j

S O O
S S S S

S O O
π π π π

∀ ⊆ −> ⇒ ≥ ∀ ⊆ −
 (24) 

 
Proof: Suppose in graph G for some j and k, there is iS and jS that ( ) ( )j kS Sπ π>  but 

( ) ( )c c
j kS Sπ π< . Now construct a new graph H by moving subset c

jS from jO to kO , and 

moving subset c
kS from kO to jO (that’s always possible because we’ve eliminated common 
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parts of jO and kO from consideration in these subsets, thus no conflicts will happen). Now 
note that: 
 ( ) ( ) 0j kS Sπ π− >  (25) 

 ( ) ( ) 0c c
k jS Sπ π− >  (26) 

 ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( )c c c c
j k k j j j k kS S S S S S S Sπ π π π π π π π⇒ + > +  (27) 

The right quantity appears in H and the left quantity appears in G. Nothing else has 
changed. So now the sum of products is increased in H, which is in contradiction with the 
assumption that G maximizes [# of empty output bins]E .  
 
Proof of Theorem 2: Let’s call the graph with maximum [# of empty output bins]E  to be 
G with output sets G

jO , and let H be the graph generated by greedy algorithm with output 

sets H
jO . I’ll show that the output sets are identical in both graphs and hence H maximizes 

[# of empty output bins]E too. 
Suppose this is not true and for the first time during the execution of greedy algorithm, it 
chooses a number 1 1ij ip n= − and adds it to H

jO , but ijp is not included in G
jO . So there is 

G
jq O∈ which is not in H

jO . Certainly ijq p> because greedy algorithm always picks 
smallest available numbers, and till here both algorithms have been the same. Also 

ijp will appear somewhere in G, say in G
kO . But ( ) ( )G G

k jO Oπ π≥ , because greedy 
algorithm always chooses the smallest subset to feed. By lemma 1, this is not possible in 
G. Therefore greedy algorithm always makes the correct decision.  
 
 
After this, we need to search for best 1 2( , ,..., )Nn n n  to maximize 

[# of empty output bins]E . This can be done using simulations based on greedy 
algorithm, and then proving the results analytically. 
I guess the vector (1, 2,..., )N is the maximum point, or at least it’s very close to 
maximum for large N. Yet I have no proof for that and it’ll be added to the list of future 
work! But if this is true, then we can conclude that: 
 

• 
1 1[# of empty output bins] ( )

2 2
N NE N

N
α− +

≤ ⇒ ≥  

• Hence iSLIP random with only one iteration would give 100% throughput with 
speedup 4. That’s because any maximal matching algorithm gives 100% throughput 
with speedup 2. 

• There’s an upper bound on the average of maximum number of iterations needed for 
iSLIP random to converge: 

2[max # of iterations needed] log .E N≤  
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6  Summary 
 
What I did in this project: 
• Work on MNCM algorithm which finally resulted in some counter examples, and 

found out the issue with the fluid model proof. 
• An innovative look into fluid model method to prove stability of LPF under general 

traffic. Although I think the proof needs to be more detailed and accurate. 
• A new way toward analyzing stability and convergence of iterative scheduling 

algorithm. The problem is not finished yet. 
 
Essentially, it was a unique experience for me to take the course. Failing the first problem 
made me motivated enough to look for new problems, to try risky things and to be more 
adventurous; what I’ve never experienced before; facing with challenging problems while 
constrained in time. 
Thank you dear TA’s and Professors for your great assistance. 
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