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Abstract

Load balancing and switch scheduling are two important ritlyos in the effort to maximize the stability
region and minimize (average) latency. Load balancing leegs the traffic to conform to the service rate while
the switch scheduling allocates the service rates adaftitiee arrival patterns. Many existing load balancing and
switch scheduling algorithms share great resemblance. e $hat the load balancing and switch scheduling
problems are dual systems of each other based on the lineaieglynamics approximation. This allows us to
cast a load balancing problem in terms of a scheduling pnotdad vice versa. We further show an example of
designing a new algorithm for load balancing using an exgsticheduling algorithm based on the duality. We also
explore the possibility of finding the entropy rate of thedamized load balancing system based on the duality
and current knowledge of the entropy rate of randomized lmdncing system [5].

The load balanced switch has stirred a lot of interest fosiitgplicity and performance. We conjecture the joint
use of more sophisticated load balancing and switch schmedalgorithms will further improve the performance.
We use mean field analysis to show such performance gain inrtbadimensional case.

. INTRODUCTION

Load balancing is a fundamental problem in many practicanados. A familiar example is the
supermarket model where a central allocator assigns eaimstingrcustomer to one of a collection of
servers to minimize the expected delay. The intuitivelyald8Q (join the shortest queue) algorithm is
optimal but the implementation for large systems can belyogarious randomization algorithms were
proposed [2] to reduce the complexity of the algorithm whieeping the good performance. The use of
memory in randomized load balancing has been proven attadt was shown in [3] that memory gives
a multiplicative effect instead of an additive effect forrfoemance improvement.

Switch scheduling determines which inputs to connect withictv outputs in every time slot. It is
well known that the crossbar constraint makes the switckedding problem a matching problem in a
bipartite graph [4]. Even though the scheduling problemeaypp to be solved by completely different
techniques from load balancing, we observe that many sdhgdalgorithms have a counterpart in load
balancing algorithms. For example, SQ vs. LQF, RAND, RANDé&hd randomized algorithms with
memory RAND(d,m), etc. In this project, we aim for a fundanamelationship in finding load balancing
and switch scheduling algorithms. We show that the two m@moisl can be cast into each other using a
negative dual transformation. We can use this duality to eamp with new algorithms and solve new
problems.
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Fig. 1. (a) One Dimensional Load Balancing (b) Bandwidthogétor

We also observe that dual algorithms usually work well tbgetThis is often due to the mathematical
duality that is fundamental to the system. We study the jsystem with dual load balancing and switch
scheduling algorithms for the one-dimensional system. Wavsthe performance gain using mean field
analysis. The two-stage load balanced Birkhoff-von Neumawitches discussed in [1] involves load
balancing in the first stage where load balancers allocateadlic uniformly across all virtual output
gueues with the correct destination. We conjecture thajainé use of more sophisticated load balancing
and scheduling algorithms give much better performance.

The rest of the paper is organized as follows. We show thevalguice of load balancing and switch
scheduling algorithms for one dimensional system in Seclio We extend the argument to aM by
N switch in Section Ill, where we also illustrate how the dtyaliesult can be useful. We will discuss
our attempt to solve the entropy rate problem for randomizaddwidth allocation based on duality
in Section IV. We analyze the performance of jointly usingaldioad balancing and switch scheduling
algorithms for the one-dimensional system in Section Valnwe conclude in Section VI.

[I. 1-D SCENARIO: LOAD BALANCING AND BANDWIDTH ALLOCATION

In this section, we consider one dimensional load balanaing switch scheduling algorithms. In a
one dimensional load balancing system, a single packetrsti@rives at a load balancer and the load
balancer allocates each packet to one ofXhservers with individual queues. The one dimensional switch
scheduling algorithm is often referred as bandwidth alioca All NV input queues share one server and
the scheduler determines which queue to serve at each twheFsjure 1 shows the one dimensional
load balancing and scheduling problem.

We assume the arrivals happen at the beginning of a time stbdapartures occur at the end of the
time slot and the packet buffer length is measured in the Imidfithe time slot. Let;(n) denote the'”



queue length at time slot and A;(n) and D;(n) denote the number of arrivals and departures in time
slot n, respectively. Note4;(n) and D;(n) only take binary values. For any queijeve have

gi(n+1) = [gi(n) — Dy(n)]" + A;(n +1). Q)
The dynamics of the queue is not linear and it is often appnated as a linear system:

In a load balancing system, the load balancer controls thieabto each queued;(n) while D;(n) is
given by the service discipline. On the other hand, switdtedaling algorithm determines the departures
from each queud;(n) while A;(n) is not controllable.

Note the approximate system dynamics have an equivalergseptation:

—qi(n+ 1) &~ —g;(n) + D;(n) — A;(n + 1). (3)
If we setg;(n) = —q;(n), Ai(n+1) = D;(n) and D;(n) = A(n + 1), then we have
Gi(n+1) ~ §(n) + Ai(n + 1) = D;(n). 4)

Note this is exactly the same as Equation 2. If we start withaadividth allocation problem that has
system dynamics as in 2 and we need to deterniip@), we arrive at a load balancing problem as
in 4 and we need to determind;(n + 1), the equivalent ofD;(n). This equivalence is achieved by
considering a negative dual system. By negative, we medrttiranew system has a state variable that
is the negative of the original system. By dual system, wemtba arrival and departure processes are
swapped. Essentially, one can imagine this as reversinthalarrows in Figure 1(b) and consider the
bandwidth allocator as a token allocator. If a token arrigegjueues, then one packet can leave that
gueue. Hence, the number of packets waiting in the queueual éq the negative of the number of
tokens in the queue. By doing this, we can cast the bandwitithation problem as a load balancing
problem. Note this is only true for the approximate queueatyics. We would need to verify how well
this approximation works in the simulations.

Another technical point is that the time indexes change wherswap the arrivals and departures. This
is due to our convention that arrivals occur at the beginmhghe time slot and departure occur at the
end of the time slot. Between the measuremeny; 0f) and¢;(n + 1), there is one arrivali;(n + 1) and
one departuré);(n). Thus we swap the arrival and the departure within the timmeésuringy;(n) and
¢;(n+ 1), we need to change their time indexes as well to conform withassumption.

By considering the negative dual system, we arrive at twatidal systems except for the sign of the
state of the system. Hence, the load balancing algorithm j8iQ the shortest queue) will lead to the
bandwidth allocation algorithm LQF (Longest Queue Firgtlso due to the equivalence in the system
dynamics, when a version of RAND, RAND(d) and RAND(d,m) ied$n load balancing, the performance
of the switch is similar to what can be achieved by the duabridlgm in switch scheduling.
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Fig. 2. Load Balancing and Switch Scheduling in Two-stagad-8alanced Switch

Since the queue length process is a Markov chain, the timergiity is often studied. Basically,
¢i(n+1) =~ ¢;(n) — Di(n) + A;(n + 1), is equivalent tog;(n) ~ gx(n + 1) + D;(n) — Ai(n + 1). If we
swap the arrivals and the departures, the queue dynamedbet®me the same. This may imply that the
load balancing in the forward time is equivalent to the baidtiwallocation in the reverse time. However,
we are not able to explain some of the resemblance with this/aglgnce. For example, the SQ policy in
load balancing should stay optimal for the the bandwidtbcaltion, which is not true.

[11. 2-D SCENARIO: CROSSBARLOAD BALANCING AND SWITCH SCHEDULING

The dual relationship in Section Il can be extended to the dmeensional scenario as in a common
Nz N switch. A packet that arrives at an inpubas a certain destination The load balancing refers to
the allocation of a packet to inpuwith destination; to one of the VOQs of; for anyk = 1,2,--- | N.
Thus we haveV load balancers at the input side. These load balancers ardicated by a single load
balancing algorithm. Note at any given time slot, we can drdye one packet arriving at a given input.
We assume zero queuing at the load balancers. Hence, allattiets arrive at time slat need to be
transported to one of the VOQs in the same time slot. We alsstain theN parallel load balancers
so that only one of the load balancer can allocate its packahy VOQ'sg;; with the same. Basically,
we only allow one read operation at any given input at any tifftleese assumptions ensure the load
balancing problem is essentially a matching problem. ThHeedualing algorithm is well studied in the
NzN switches. It has been shown that the scheduling is the sanaebgsartite graph matching and
many matching algorithms have been designed. The joint Lideedoad balancing and switch scheduling
forms a two-stage load-balanced switch similar to the olp@sed in [1] except we propose to use more
sophisticated load balancing and scheduling algorithms.

Similar to the one dimensional case, the switch scheduliggrithm can be cast as a load balancing
problem if we consider the negative queuing system with depes and arrivals swapped. This time, we



cast load balancing as a switch scheduling problem sinces¢heduling is much better studied for the
crossbar switch. However, there is some technicality. Inviich scheduling algorithm, an edge can be
useless if there are no packets from its input port to its wugort. However, the matching algorithms
deal with this problem naturally. For load balancing, anee@guseless when there is no arrival to that
input port at a given time slot. But this is not usually noteakcare of in the matching algorithms. This
can be easily fixed. At times, if there is no packet arriving at input poit we assumey;; = oo for

all j =1,--- ,N. Thus we can apply the MWM (Maximum Weight Matching) (and gudially many
other scheduling algorithms) to load balancing and get a loes balancing algorithm. The counterpart
of MWM is essentially a minimum weight matching with the appriate queue lengths set & if no
packets arrive in the current time slot.

V. ENTROPY RATE OF LOAD BALANCING AND SWITCH SCHEDULING

In Section Il and Ill, we have shown that load balancing andcwscheduling are dual systems of each
other for the linear dynamics approximation. If the line@peximation proves itself to be an accurate
one, we would expect the property of one system holds truédatual system. In this section, we study
the entropy rate of the randomized scheduling based on tbwlkdge of the entropy rate of randomized
load balancing as studied in [5].

The one dimensional load balancing system as shown in Filfa)eis studied in [5]. In particular, it is
assumed that all servers have identical service pates1 fori =1,--- , N. The class of the randomized
load balancing algorithms that can be described by a coswtuxlel is considered. We review the coin toss
model defined in [5] as follows. Let(k) be the permutation of numbers ©f2,--- | N which arranges
the queues in the increasing order in time ¢let 1 right after departure®;(k). Letp = (p1,--- ,pn) be
a probability vector representing the probabilities of thecome of the toss of a coin witN sides and
let p; > ps > --- > py. If @ packet arrives in time slot, we toss anV-sided coin distributed according
to p. If the outcome of the coin toss 8, 1 < C < N, then the packet joins the queue (k). The
randomized algorithm S@J can be identified with

JU)C)
(V)

The special case af = 1 can be identified with the vectdr;, -, +).

The main theorem gives a closed-form formula for the entngig of the load balancing algorithms
that can be specified by the coin toss model.

Theorem 1. Suppose the arrival process to thequeue system is stationary, ergodic and renewal. Let
the service distribution be independent of the arrival psscand i.i.d. Under mild technical conditions [5],

the entropy rate of the queue-size process of any algorittanlielongs to the coin toss model is equal




to A(Hrr(A) + H(S) + H(C)), where A, S, C are random variables representing the inter-arrival time,
the service time and the coin toss result respectively.

The problem of the entropy rate of the bandwidth allocatioobfem shown in Figure 1 (b) can be
similarly described as a coin toss model. We dék) be the permutation of,--- | N and it arranges
the queue sizes in decreasing order in time loight after arrivalsA;(k). The coin toss probability for
LQF(d)! is the same as that of S@( We toss a coin to decide which queue to serve.

When all the queues are always non-empty, the linear quenantigs are exact. Hence, the duality
holds. We could use the negative dual transform shown ini@ett and cast the bandwidth allocation
problem in the language of load balancing. lggtk) = —q;(k), A;(k + 1) = D;(k), Di(k) = A;(k +
1) for i = 1,--- , N, then the randomized bandwidth allocation problem is gedgia load balancing
problem that can be described as follows. l€k) be the permutation of,--- ;N and it arranges
the §1(k), G2(k),- - - ,dn(k) in the increasing order in time sldt— 1 right after departure;(k — 1).
Then we do the coin toss. Note this description is exactlystome as the coin toss model for the load
balancing algorithm. We can also swap the arrival procedsdaparture process since they have exactly
the same properties. For example, with Poisson arrivalseapdnential services, both inter-arrival and
inter-departure times are exponential. Therefore, exgingnthe arrivals and departures will not lead to
inconsistency problems. Hence, we claim the entropy rathetwo systems are equal. This leads us to
the following proposition.

Proposition 1: If all the queues in the system are always non-empty, theopytrate of the queue
dynamics is the same for the load balancing and switch sdingdsystems with correspondent parameters.
Hence, the entropy rate of the load balancing system wiith irrivals of rate\ for each queue has the
entropy rate of\(Hgr(A) + H(S) + H(C)).

However, Proposition 1 does not hold when the queues can Iptyesince the queue dynamics is
no longer linear. We believe this is due to the loss of intergeability of the inter-arrival and inter-
service times. Let us assume Poisson arrivals and expahsatvices. For load balancing and bandwidth
allocation systems, the inter-arrival times are expomégnibut the inter-service times are exponential plus
some potential idle time between services due to empty quéimvever, when we consider the negative
dual system of the bandwidth allocation, the new arrivalcpss has an inter-arrival time of the sum of
exponential random variable plus some random idle time.sTke no longer have the exact mapping.
We denote the random time between serving kffepacket and thék + 1)*¢ packet as/ (k). Note I(k)
is always equal to zero when all the queues are always notyeifipe bijection that proves Theorem 1
no longer holds. However, we have two injections that givewer bound and an upper bound on the
entropy rate.

Proposition 2: The entropy rate of the bandwidth allocation system is ufmoemded by\(Hgr(A) +
H(S)+ H(I)+ H(C)) and lower bounded byx(Hggr(A) + H(S + I)).

YIn LQF(d), we randomly choosd samples in each time slot and serve the longest queue amenbsémples. If all thel queues are
empty, no packet will be served in the current time slot.
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Fig. 3. Joint Load Balancing and Bandwidth Allocation in 1sistem

Outline of the Proof: We follow all the notations in [5]. In addition, we definél,, be the future inter
service idle times for the packets in the queue at time We also assum& I, has finite entropy for
any k. We have the following injections:

(Q07 VEH-’ VIO—H ai, AN(k)_la SN(k)a IN(k)apN(k)) - (Q07 T, QK)
This gives the upper bound. We also have
(QO; e 7QK) - (a/la AN(k)_17 (S + I)N(k))

This gives the lower bound.
However, these bounds are not tight. The search for tighaandls will be future research.

V. MEAN FIELD ANALYSIS FORJOINT LOAD BALANCING AND BANDWIDTH ALLOCATION

One of the original motivations for this project is to desigroad-balanced switch where the first
stage employs a load balancing algorithm and the second st the dual switch scheduling algorithm.
The motivation of using dual algorithms come from the obatow that the joint use of dual algorithms
often achieve optimal performance in linear systems, fanmgxe, the Kalman filter followed by a state
feedback controller is optimal for LQG (Linear QuadraticuSsian) control. We believe such joint system
gives better performance gain than the systems where otilgreioad balancing or switch scheduling
algorithm is adopted. We show the performance gain in thedimensional system as in Figure 3. We
extend the mean field analysis to the joint load balancingsaieduling system.

We consider a system where the arrival is Poisaby)(and a load balancer allocates all the packets
to a bank of N queues. We assume that theSequeues share the same server that operates afVrate



A bandwidth allocator at the server side determines whicbuguit serves when the server is free. We
compare the joint load balancing and switch schedulingesystith the system where only load balancing
algorithm is used with the simple random scheduling albarit

For load balancing algorithms, we know that the SQ is thenagitibut the complexity is prohibitive
when N is large. In order to trade for complexity, randomized allipons are proposed. RAND is the
most simple and it delivers the arriving packet to a randowseh queue with equal probabilities. With
RAND, the system is the same &5 independentV//M/1 queues. SQ(d) is a good compromise of the
SQ and RAND. SQ(d) pickd random samples and allocate the packet to the shortest gueorg the
d samples.

The mean field analysis of Sg)(is discussed in [6] and it was shown that the cumulativeritistion
of queue length iP(Q > i) = AT, Now let us consider the system where 8)Qi6 used for load
balancing while LQR{) is used for the bandwidth allocation. Lei¢) denote the fraction of the queues
with load at least at timet. Thens;(t) satisfy the following set of differential equations.

Bll) _ \sta8) — s88) — 11— e (®) — (1 - su(0)") ©
In equilibrium, ds;'—f) = 0. Since the above equation is true for all
D A(sioa(t) = i) = D (1= seea (1)) = (1= si(t). ()
k>i k>i

This gives
si(t) = 1= (1= Asfy (1), ®
By the law of large numbers?(Q1 > i) = s;(t). Sincesy(t) = 1 for all t. We can find the distribution
of the queue length using recursions. We compare the @int2) and LQF(2) with SQ(d) only and

LQF(d) only d = 2,3. The figure 4 shows the joint use 6%Q(2) and LQF(2) performs much better
than SQ(2) along or LQF(2) alone.

VI. CONCLUSIONS

We study the similarity between load balancing and switdimedaling algorithms. We show that the
two problems are equivalent based on a negative dual tnanafmn for the linear queue dynamics
approximation. This duality can help us come up with new @algms in load balancing based on the
existing scheduling algorithms and vice versa. The dualisp directly leads to the entropy rate of the
bandwidth allocation system when the linear queue dynaamesxact (all the queues in the system are
always non-empty) since we already know the entropy ratbeidad balancing system. However, when
the the queues do not have linear dynamics, we are not abladdlfe exact entropy rate, instead, we
find an upper bound and a lower bound. We are interested torséartighter bounds in future research.

The joint use of load balancing and switch scheduling arevalto improve the performance in the one
dimensional system. We conjecture that similar perforreagains can be obtained for the two dimensional
system as well.
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