Optimal Network Flow Allocation

EE 384Y
Almir Mutapcic and Primoz Skraba
27/05/2004
Problem Statement

- Optimal network flow allocation
 - Find flow allocation which minimizes certain performance criterion
 - Lowest average delay through the network
 - Minimize maximum link utilization
 - Fair bandwidth allocation and QoS agreements
 - Trade-off between optimality and simplicity
 - Devise practical schemes with low computational complexity and guaranteed performance bounds
Motivation

- Internet backbone and PoPs are over-engineered
 - Overcome link failures
 - Underutilized (multiple routes exist)
- Current Protocols
 - Typically find shortest path(s)
 - Do not directly minimize delay through PoPs
Background

- IS-IS & OSPF
 - Link-state routing protocols
 - Limited load balancing
 - Manually tuned to a few routes (traffic engineering)

- MPLS
 - Re-labels packets in the internal network

- Previous work
 - Resource Allocation (minimize max link utilization)
 - Routing Heuristics
Informal Formulation

- Optimal network flow allocation
 - Decide how to distribute packets from a particular flow across the network links (x variables)
 - Satisfy conservation laws

- Definition of a flow
 - Aggregate flow to each destination (sink) node
 - Every other node can be a source to the sink node
 - Source-sink vector

$$s_d^{(d)} = - \sum_{i \in \mathcal{N}, i \neq d} s_i^{(d)}$$
Mathematical Formulation

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{L} \phi_i (T_i) \\
\text{subject to} & \quad Ax^{(d)} = s^{(d)} \\
& \quad x^{(d)} \geq 0 \\
& \quad T \leq C, \\
\end{align*}
\]

where \(d = \{1, \ldots, D\} \).

- Convex cost function for each link \(i \)
- Total link \(i \) traffic \(T_i = \sum_{d \in D} x_i^{(d)} \) (\(x \) is flow’s traffic)
- Node-link incidence matrix – \(A \)
- Link capacity vector – \(C \)
Piece-wise Linear Approximation

- **Goal:** Convert problem into LP
 - Approximate convex function by K (PWL) segments
 - Epigraph minimization (p variables)

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{L} p_i \\
\text{subject to} & \quad Ax^{(d)} = s^{(d)} \\
 & \quad x^{(d)} \geq 0 \\
 & \quad -p_i + m_i^k T_i \leq -b_i^k, \quad \forall i = 1, \ldots, L, \forall k = 1, \ldots, K \\
 & \quad T \leq C,
\end{align*}
\]

where $d = \{1, \ldots, D\}$,
m_i^k is the slope and b_i^k is the intercept of the kth PWL approximation on the link i.

- $[\text{Image} 36x36$ to $46x46]$
- $[\text{Image} 306x92$ to $538x700]$
Cost Function

- Minimize delay over all links
- Delay for one link
 - M/M/1 queue delay
 \[\phi_i(T_i) = \frac{T_i}{C_i - T_i} \]
 - A convex function
- Problem
 - Complex algorithms
 - Slow convergence
PWL Approximation

- How to approximate?
 - Uniform
 - MSE
 - Min-Max
PWL Optimization Algorithm

- Centralized “one-shot” algorithm ($K > 100$)
 - Computational intensive
 - Very accurate results for underutilized networks

- Centralized iterative algorithm ($K < 10$)
 - Solve LP for the given K (start)
 - Identify link segment $k = 1, ..., K*$ that contains traffic flow
 - Split marked link segment into K more segments
 - Update LP constraints (slopes and intercepts)
 - Repeat until stopping criteria satisfied
Algorithm Simulation

- Experimental Setup
 - MATLAB `linprog()`
 - Sprint IP backbone network topology
 - Traffic matrix
 - Uniform traffic
 - Sparsity pattern
Results

- Uniform traffic, unit capacities, \((K = 2, 3, 5)\)
Results

- Iterations (how many?)
 - Stopping criteria
- Feasability
 - 10E-6
- Convergence
 - Always finds feasible solution (if one exists)
More Results

- Gaussian traffic with sparsity pattern, unit C
Even More Results

- Heavy Gaussian traffic with sparsity, random C
Traffic Distribution

Total flow allocation

[Diagram showing network with nodes labeled 1 to 15 and edges connecting them, illustrating traffic distribution.]
Computational Complexity

- LP interior-point algorithms
 - $O(M^{3.5}D)$ number of arithmetic operations
 - $O(\sqrt{MD})$ number of iterations
 - M is number of variables + inequality constraints
- For our problem:
 - $M = LF + LK + L$
 - For i iterations = $iL(K+F+i/2+3/2)$
Storage Complexity

- Memory storage requirements
 - $\left(LFN + N + LF \right) (\lfloor \log_2 D \rfloor + 2)$
 - F – Flows
 - L – Links
 - N – Nodes
 - K – number of segments
 - $\alpha = \lfloor \log_2 D \rfloor + 2$
 - $(KLFN + N + KLF) \alpha \approx KLF(N + 1)\alpha$
 - ith iteration: $(K + i)LF(N + 1)\alpha$
Distributed algorithm

- Centralized implementation
- Easily distributed (especially PWL approximation)
- Dual methods
 - Subgradient ascent
 - Lagrangian relaxation
- Path augmentation approach
Protocol Implementation

- Routing protocols
 - MPLS-like labeling
 - At most M flows
 - M – Number of edge routers or PoPs
 - DEST determines p_i

<table>
<thead>
<tr>
<th>DEST</th>
<th>IP PACKET</th>
</tr>
</thead>
</table>

p_1
p_2
p_3
Edge Routers

- Full look-up
 - DEST – ID of edge router where packet leaves PoP
 - Identifies flows within PoP

- Congestion Control
 - All congestion control can be done at the edges
 - Detect when traffic not admissible – not feasible
 - Drop packets at edge
 - Estimate flows – recalculation at substantial change
 - Should not occur often – large aggregation of flows
Conclusion

- Most links underutilized (IP backbone)
- But still cannot guarantee performance (e.g. delay)
- Optimal network flow allocation could help
- We suggest a practical algorithm
 - Converges to near optimal solutions
 - Few iterations
 - Standard LP
 - Can make it distributed
- Special thanks to Yashar Ganjali for all his help!!
Questions?
PWL Approximation (1)

- Convert PWL problem into LP

new objective with PWL approximations

\[
\text{minimize } \sum_{i=1}^{L} \max_{k=1,\ldots,K} \left(m_i^k T_i + b_i^k \right).
\]

- write each of these nonlinear constraints as

\[
K \text{ linear constraints in the form } m_i^k T_i + b_i^k \leq p_i.
\]

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{L} p_i \\
\text{subject to} & \quad Ax^{(d)} = s^{(d)} \\
& \quad x^{(d)} \geq 0 \\
& \quad -p_i + m_i^k T_i \leq -b_i^k, \quad \forall i = 1, \ldots, L, \quad \forall k = 1, \ldots, K \\
& \quad T \leq C,
\end{align*}
\]

where \(d = \{1, \ldots, D\}. \)