Hamming codes: review

The \((7, 4)\) binary Hamming code consists of \(2^4 = 16\) 7-bit codewords that satisfy three parity-check equations.

\[
\begin{align*}
c_1 \oplus c_3 \oplus c_5 \oplus c_7 &= 0 \\
c_2 \oplus c_3 \oplus c_6 \oplus c_7 &= 0 \\
c_4 \oplus c_5 \oplus c_6 \oplus c_7 &= 0
\end{align*}
\]

We can characterize the code using the parity-check matrix \(H\):

\[
c H^T = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}^T = 0
\]

Check bits \(c_1, c_2, c_4\) can be computed from \(c_3, c_5, c_6, c_7\).

\[
\begin{align*}
c_1 &= c_3 \oplus c_5 \oplus c_7 \\
c_2 &= c_3 \oplus c_6 \oplus c_7 \\
c_4 &= c_5 \oplus c_6 \oplus c_7
\end{align*}
\]

\[
\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}
\]
Hamming codes: error detection and correction

Each codeword bit affects at least one equation. Therefore every single-bit error can be detected.

Each bit is checked by a unique set of equations. Therefore the error location can be determined by which parity-check equations fail.

Definition: the syndrome \(s = [s_0 \ s_1 \ s_2] \) of received vector \(r = [r_1 \ r_2 \ldots r_7] \) is the binary vector that tells which parity-check equations are not satisfied.

\[
\begin{align*}
s_0 &= r_1 \oplus r_3 \oplus r_5 \oplus r_7 \\
s_1 &= r_2 \oplus r_3 \oplus r_6 \oplus r_7 \quad \iff \quad [s_0 \ s_1 \ s_2] = [r_1 \ldots r_7] H^T \\
s_2 &= r_4 \oplus r_5 \oplus r_6 \oplus r_7
\end{align*}
\]

When \(s = 0 \), the decoder assumes that no error has occurred. This is the most likely conclusion under reasonable assumptions.

Each nonzero value of \(s \) corresponds to an error in exactly one of \(2^3 - 1 = 7 \) bit positions. The syndrome identifies the location of a single error.

For this parity-check matrix \(H \), the syndrome \(s = [s_0 \ s_1 \ s_2] \) is the binary representation of the assumed error location (most significant bit is \(s_2 \)).

EE 387, September 28, 2015
Hamming codes: minimum distance

Hamming codes can correct single errors. Thus $d^* \geq 2t + 1 = 2 \cdot 1 + 1 = 3$.

When used for error detection only, Hamming codes detect double errors.

Fact: minimum distance is exactly 3. Therefore Hamming codes can either correct single errors or detect double errors (but not both simultaneously).

A Hamming code with m parity-check bits has $2^m - 1$ nonzero syndromes, hence blocklength $n = 2^m - 1$. The rate quickly approaches 1 for large n.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>k</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0.3333</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>0.5714</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11</td>
<td>0.7333</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>26</td>
<td>0.8387</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>57</td>
<td>0.9047</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>247</td>
<td>0.9686</td>
</tr>
<tr>
<td>15</td>
<td>32767</td>
<td>32752</td>
<td>0.9995</td>
</tr>
<tr>
<td>32</td>
<td>4294967295</td>
<td>4294967263</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Extended (expanded, expurgated) Hamming codes

Two easy ways to “extend” a Hamming code:

- **Add overall parity-check bit**: \(c_0 = c_1 \oplus \cdots \oplus c_7 \iff c_0 \oplus \cdots \oplus c_7 = 0 \).

 \[
 H_1 = \begin{array}{cccccccc}
 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]

 This expanded code has blocklength 8 but same number of codewords. Code parameters: \((8, 4, 4)\), rate 1/2.

- **Add overall parity-check equation**: \(c_1 \oplus c_2 \oplus \cdots \oplus c_6 \oplus c_7 = 0 \).

 \[
 H_2 = \begin{array}{cccccccc}
 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]

 This expurgated code consists of Hamming codewords with even parity. Code parameters: \((7, 3, 4)\), rate 3/7.
Extended Hamming codes: minimum distance

Both expanded and expurgated Hamming codes are constructed by adding redundancy to code with minimum distance 3.

- The minimum distance of extended codes is no smaller, hence ≥ 3.
- All codewords have even parity, so distance between codewords is even.

Therefore the minimum distance is an even number and so is ≥ 4.

- Hamming codes contain codewords of weight 3.
- The additional parity-check bit increases distance by at most 1.

Therefore the minimum distance of extended Hamming codes is $d^* = 4$.

These codes can correct single errors and simultaneously detect double errors.

Double error is indicated by nonzero syndrome but even overall parity.
General product codes

Let C_1 be an (n_1, k_1) block code and let C_2 be an (n_2, k_2) block code. The product code $C_1 \otimes C_2$ is an $(n_1 n_2, k_1 k_2)$ code.

Encoder (systematic) for product code:

- First arrange $k_1 k_2$ information symbols in a $k_2 \times k_1$ array.
- Then encode first k_2 rows using code C_1.
- Finally encode all n_1 columns using code C_2.

Fact: the minimum distance of $C_1 \otimes C_2$ is $d^* = d_1^* \cdot d_2^*$.

By definition, every column is a codeword of C_2. But if C_1 and C_2 are linear codes, then all rows are codewords of C_1. This definition assumes systematic encoders for C_1 and C_2.
General product code example

Consider the product of two $(8, 4, 4)$ expanded Hamming codes.

![Diagram of product code parameters]

Product code parameters: $(n, k, d^*) = (64, 16, 16)$. Rate: $1/4$

Error correcting ability: $t = \left\lfloor \frac{(16 - 1)}{2} \right\rfloor = 7$

Product codes can be decoded up to the guaranteed error correcting ability. The decoding procedure requires a column decoder that can correct both errors and erasures. (Blahut chapter 12.)

We will find more efficient codes; e.g., the $(64, 25, 16)$ expanded BCH code needs only 39 check bits for same minimum distance.
Nonbinary single error correcting code

The single check equation

\[c_1 + c_2 + \cdots + c_n = 0 \]

allows detection of a single symbol error in a received \(n \)-tuple.

Furthermore, the syndrome \(s \) defined by

\[s = r_1 + r_2 + \cdots + r_n \]

indicates the *magnitude* of the error. If the error is in location \(i \) and the incorrect symbol is \(r_i = c_i + e_i \), then

\[s = r_1 + r_2 + \cdots + r_n = c_1 + \cdots + (c_i + e_i) + \cdots + c_n = e_i . \]

The syndrome tells exactly what should be subtracted from the incorrect symbol in order to obtain a codeword.

What is not known is where the error is— which symbol is wrong.
More equations needed

A second equation is needed to identify the error location. The effect of an error magnitude on the syndrome should be different for each location.

A reasonable choice for this second equation:

$$1 \cdot c_1 + 2 \cdot c_2 + \cdots + n \cdot c_n = 0.$$

Now every valid codeword satisfies two equations:

$$1 \cdot c_1 + 1 \cdot c_2 + \cdots + 1 \cdot c_n = 0$$

$$1 \cdot c_1 + 2 \cdot c_2 + \cdots + n \cdot c_n = 0$$

We can derive encoding equations to express c_1, c_2 in terms of c_3, \ldots, c_n.

Example: Let symbols be 4-bit values with addition modulo 16. For $n = 15$,

$$H = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & 15 \end{bmatrix}$$

is parity-check matrix for a code that can correct single symbols errors. Almost.
Decoding procedure

Suppose there is a single error of magnitude $e_i \neq 0$ in location i. The syndrome $s = [s_0 \ s_1]$ can be expressed in terms of unknowns i and e_i:

\[
\begin{align*}
 s_0 &= \sum_{j=1}^{n} r_j = e_i + \sum_{j=1}^{n} c_j = e_i \\
 s_1 &= \sum_{j=1}^{n} j r_j = i e_i + \sum_{j=1}^{n} j c_j = i e_i
\end{align*}
\]

We can determine e_i and i from the syndrome equations:

\[
\begin{align*}
 e_i &= s_0 \\
 i &= \frac{i e_i}{e_i} = \frac{s_1}{s_0}
\end{align*}
\]

Sadly, division is not always defined for modulo 16 arithmetic. E.g., suppose $s_0 = 4, s_1 = 8$. Then $s_1 = is_0 \mod 16$ has four solutions:

\[2, 6, 10, 14.\]

We cannot be certain where the single error is located.
Finite fields

This problem with division is solved by using a “better” multiplication. We will define GF(16), the field of 16 elements.

In GF(16), multiplication has an inverse operation of division, and most of the other familiar properties of arithmetic are valid.

Another approach: mod 17 arithmetic with channel alphabet \{0, 1, \ldots, 16\}.

The “parity-check” matrix for a 1EC code over GF(17) is

\[H = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & 16 \end{bmatrix}. \]

The error pattern and location can be computed using the above equations:

- error pattern: \(e_i = s_0 \)
- error location: \(i = \frac{s_1}{s_0} \)

Using either GF(16) or modulo 17 arithmetic, these equations can be solved when \(s_0 \neq 0 \).
Reed-Solomon codes

The codes over GF(16) and GF(17) are examples of Reed-Solomon codes. Reed-Solomon codes use symbols from finite field GF(Q) and have $n = Q - 1$.

Each row of H consists of consecutive powers of elements of GF(Q).

When the elements are chosen carefully, each additional check equation increases the minimum distance by 1.

For example, the following parity-check matrix corresponds to 4 equations:

$$H = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 3 & \cdots & 16 \\
1 & 4 & 9 & \cdots & 256 \\
1 & 8 & 27 & \cdots & 4096
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 3 & \cdots & 16 \\
1 & 4 & 9 & \cdots & 1 \\
1 & 8 & 10 & \cdots & 16
\end{bmatrix}$$

This PC matrix defines a code over GF(17) with minimum distance 5. It can correct two symbol errors in a codeword of length 16.

Decoding procedures for Reed-Solomon codes are chief goal of this course.