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I.  Introduction 
This project is composed of two main parts: 3-D motion estimation, and applications using the estimated 
3-D motion. For 3-D motion estimation, 3-D shape reconstruction is first applied and followed by model-
based 3-D motion estimation. Three applications are then demonstrated including object tracking and 
segmentation, 3-D stabilization, and motion-compensated interpolation. 

 

II.  3-D Motion Estimation 
The approach for 3-D motion estimation in this project has two stages: 3-D shape reconstruction and 
model-based 3-D motion estimation. The object shape in a video sequence is usually unknown. A 
structure from motion algorithm is first applied to reconstruct an approximate 3D shape from several 
views of the video sequence. With the approximate object shape, a model-based motion estimation 
algorithm can then be applied to estimate the 3-D motion of the object. 

 

1.  3-D Shape Reconstruction 
The object shape and motion in the video sequence is unknown in the beginning. To estimate the object 
shape, we need to solve a structure-from-motion problem, i.e. simultaneously estimate shape and motion. 

Take several views with certain variety of viewing angles from the video sequence as reference views. By 
identifying feature correspondences in these reference views, the epipolar geometry and 3-D motion 
between the reference views can be estimated. With the estimated 3-D motion, the 3-D position of these 
feature points can then be computed. The procedure is shown in figure 1. 

 

Take one of every 100 frames of digital camera sequence as the reference frames. By identifying the 
correspondences of the vertices on the camera, the 3-D position of these vertices (hence the approximate 

Identify feature correspondences

Rk0, Tk0 , Rk1, Tk1 , Rk2, Tk2  
Rk3, Tk3 , Rk4, Tk4 , Rk5, Tk5  

G 

frame k1 frame k0 frame k2 frame k3 frame k4 frame k5 

Figure 1



shape G) and object motions (Rk,Tk) (or the relative camera motions) can be estimated. The 3-D shape 
reconstruction part of project is done with the aid of off-the-shelf software [1]. 

 
2.  Model-Based 3-D Motion Estimation 
Since the approximate object shape is acquired in the 3-D shape reconstruction stage, motion estimation 
of the remaining frames can be solved using a model-based approach [2], i.e. estimate 3-D motion of an 
object with known shape. 

The model-based approach is based on optical flow equations. Since the displacement in image domain 
due to 3-D motion of the object can be linearized as a linear function of object shape and 3-D motion [2], 
the optical flow equation can be rewritten for every pixel in the object: 

Spatial gradients and frame difference can be computed from the images and object shape G is known and 
fixed, hence the object motion R, T can be estimated using linear regression method. 

The optical flow approach has several assumptions and limitations: 

a. Constant intensity assumption: 

    The intensity of one surface point of the object should be the same in different views. 

b. Linear signal model: 

    The intensity should be a linear function in image domain, i.e. the gradient should be constant. 

c. Small motion: 

    Due to the linearization of the displacement and signal model, only small motion is valid. 

d. Small deviations of shape model from real object shape 

To apply to a real video sequence, these assumptions usually don’t hold. Therefore, the motion estimation 
is not stable and is sensitive to noise. Several auxiliary techniques can be applied to improve the 
robustness and accuracy of motion estimation [2].  

 
(1). Iterative algorithm 
For large motion, an iterative algorithm is needed. The motion from frame A to frame B, say (R,T),  is to 
be estimated in the first iteration. However if (R,T) is too large for the small motion assumption, only a 
portion of it, say (R1,T1) can be estimated. A new frame A1 can then be generated by warping A with the 
motion (R1,T1). Now frame A1 and B can be used for the next iteration. The total motion (R,T) will be the 
concatenation of the results in each iteration (R1,T1), (R2,T2)…etc. This concept can be expressed as a 
simple 1-D analogy shown in figure 2. 

 

 

 

 

(2). Multi-scale algorithm (coarse-to-fine) 
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Small motion in a low-resolution image is equivalent to larger motion in full-resolution image. Therefore, 
with multi-scale algorithm a large motion can be estimated at the lower-resolution stage and then refined 
at the higher-resolution stage. The concept is shown in figure 3. Combining multi-scale with iterative 
approach can reduce the number of iterations and also prevent from being caught in local minimum. 

 

 

 

 

(3). Quadratic signal model 
The linear signal model assumption of optical flow equation can be improved to a quadratic signal model 
by changing the expression of gradient to average of gradients in two adjacent frames [2]. 

(4). Low-pass-filter 
The signal is assumed to be linear (or quadratic), at least for a small range in the image. If there are noises 
or some high frequency components, this linear signal model doesn’t hold and the gradient could drive the 
estimated motion to a wrong direction. Therefore, it is necessary to low-pass-filter the image before 
compute the spatial and temporal gradients. 

(5). Gradient threshold 
For areas in the object with constant intensity (zero gradient), there could be many motions which all 
satisfy the optical flow equations (aperture problem). These areas could bias the estimation for the whole 
object. It is usually good to use the pixels that have gradients higher than a certain threshold. 

(6). Boundary elimination  
Since the shape model is just an approximation of the object shape, it doesn’t perfectly fit the actual object. 
Therefore, background could be identified as part of the object at object boundary. For motion estimation, 
these boundary pixels should be eliminated and only the interior pixels of the object should be considered. 

(7). Outlier removal 
The constant intensity assumption doesn’t hold for the object with certain extent of reflection. This part of 
object, which largely violates the constant intensity assumption, should be rejected as outliers when 
establishing the optical flow equations. In addition, inaccurate model also introduce some outliers due to 
the inconsistence with shape model and 3-D motion. 

To reject these outliers, a soft-threshold robust estimator is used as follows: 

(i). Compute the least square solution for system of optical flow equations 

 

(ii). Compute the optical flow equation error for each pixel 

 

(iii). Compute the weight for each pixel as a function of optical equation error and satisfies 

 

(iv). Compute the weighted least square solution 

 

 

(R,T)

(R1,T1) (R2,T2) (R3,T3)
A A1 A2 B

kIITRGd
y
ITRGd

x
I

kkky
k

kx
k ∀−=

∂
∂+

∂
∂ ,),,(),,( ,2,1,,

kIITRGd
y
I

TRGd
x
I

e kkky
k

kx
k

k ∀−−
∂
∂

+
∂
∂

= ),(),,(),,( ,2,1,,

kkkk

kk

wwee
kefw

ˆˆ
),(

>⇔<
∀=

kIIwTRGd
y
ITRGd

x
Iw kkkky

k
kx

k
k ∀−=

∂
∂+

∂
∂ ),()),,(),,(( ,2,1,,

Figure 3 



The pixels with higher optical flow equation errors will be treated as outliers and put less weight. 
Therefore, their impact for the estimation of entire object will be reduced. In this way, the threshold 
doesn’t need to be explicitly determined and the outliers can still be naturally rejected. The algorithm can 
also be applied in an iterative manner. 

 

With all these auxiliary techniques, 3-D motion estimation is more robust and accurate. An example of 
motion estimation result is shown in figure 4. The image at top is warped from previous frame using 
estimated motion between previous and current frame, i.e. a synthesized current frame with texture from 
previous frame. The image at bottom is the difference between synthesized current frame and the original 
current frame. Zero difference is shifted to have color gray in the image. The complete video sequence of 
synthesized and difference images are attached as dc_motionEst_syn.avi and dc_motionEst_err,avi. 
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2.  3-D Stabilization 
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3.  Motion-Compensated Interpolation 
The main goal of this part is to down-sample the frame-rate of original sequence for storage or 
transmission and restore the original sequence by motion-compensated interpolation for display. In other 
words, represent the original sequence with lower temporal resolution and minimize the loss in quality. 

The first experiment is using 6 frames to represent the 500-frame digital camera sequence. Therefore, 
every 100 frames are interpolated from two reference frames, i.e. the leftmost and rightmost frame in each 
100-frame segment. 

A simple way to interpolate frame I from frame L and frame R is as follow: 

1. Compute 3-D positions of the object points shown in frame I by known object shape and motion 

2. Project these 3-D object points to frame L and frame R 

3. Interpolate within frame L and R for the intensity of the projected points 

4. Compute the weighted average intensity of the projected point in frame L and frame R. The weight 
is inversely proportional to the distance between frame I and frame L, R 

Basically, one interpolated frame IL is generated by motion compensation from frame L and the other 
interpolated frame IR is generated from frame R. The final interpolated frame IW is obtained by taking 
weighted average of IL and IR. For example, to interpolate frame 30 from frame 1 and frame 100, I1 is 
weighted by 0.7 and I100 is weighted by 0.3. The result of this algorithm is shown on figure 7(a). 

 
 

 

Frame 110 Frame 220 Frame 330 

Figure 7. Frame 320 interpolated from frame 300 and frame 400. (top) interpolated frame 
(bottom) difference between interpolated and original frame. (a) scheme 1 (b) scheme 2 

Figure 7. 3-D stabilization (top) original frame (bottom) stabilized frame 
with background replaced 

(a) (b) 



An obvious artifact is observed due to the invisibility in one of the reference frame. For example, face M 
of the object could be visible in frame 1 and frame 30, but not in frame 100. Therefore, to interpolate a 
point on face M in frame 30, only frame 1 needs to be considered. The intensity from frame 100 is 
actually from another face covering face M and hence is not a correct value. The result of modified 
algorithm by considering visibility is shown on figure 7(b) where the artifacts on figure 7(a) are removed. 

The weight in the previous cases is simply inversely proportional to the distance between frames and is 
not optimized. An optimized weight for combining IL and IR can be computed in the sense of minimizing 
the mean squared error between IW and I. In other words, by solving the least square problem below. 

IIwIw kRkL =⋅−+⋅ ,, )1(  

This equation is applied for the pixels of the object both visible in IL and IR. For those invisible in one of 
the reference frames, weight is set either to 1 or 0. 

So far the weight is the same for the entire object (except the invisible part as mentioned above). However, 
different triangle meshes of the object can have different weights by estimating the weight separately for 
each triangle mesh. This is reasonable since the weight should depend on the surface orientation of each 
triangle meshes and viewing angles of different views. 

In addition, an extra term accounts for intensity offset can also be added to the weight estimation problem.  

IoffsetIwIw kRkL =+⋅−+⋅ ,, )1(  

The weighted average without offset can only result in a value between two reference intensities. The 
offset added in the equation provides flexibility to interpolate a bright image from two dark images or vice 
versa. 

 

To summarize, 5 schemes are proposed here for 3-D motion compensated interpolation: 

1. weight inversely proportional to distance, visibility not considered 

2. weight inversely proportional to distance, visibility considered 

3. weight estimated for the entire object, visibility considered 

4. weight estimated for each triangle, visibility considered 

5. weight and offset estimated for each triangle, visibility considered 

Results for scheme 1,2 are already shown in figure 7. Results for scheme 3,4,5 are shown in figure 8.  

 
 

 
Figure 8. Frame 320 interpolated from frame 300 and frame 400. (top) interpolated frame 
(bottom) difference between interpolated and original frame. From left to right: scheme 3, 4,5



 

Table 1 lists PSNR between the interpolated and original frames when interpolating the 500-frame digital 
camera sequence with 6 reference frames using different schemes. 

Table 1. Interpolating the 500-frame digital camera sequence using 6 reference frames 

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

PSNR 25.20 dB 25.10 dB 25.36 dB 25.51 dB 26.16 dB 

 

The artifacts in scheme 1 are removed in other schemes. However, the PSNR for scheme 2 is not better 
than scheme 1. A possible reason is that even scheme 1 is averaging wrong intensities for the invisible 
part, the averaging operation still provides some noise reduction effects. However, scheme 2 is still much 
more visually pleasing than scheme 1. 

The PSNR for scheme 3,4,5 are higher than scheme 1,2 since the weights are optimized. Scheme 4 and 
scheme 5 might have discontinuities along the triangle mesh boundaries as shown in figure 9 since the 
weights (and offsets) are estimated separately for each triangle mesh. However, the PSNR in scheme 4,5 
are still higher than scheme 3. 

 
 

 

The number of reference frames can be increased to improve quality of motion compensated interpolation. 
Results by using different number of reference frames with scheme 3 are shown in figure 10(a) and 10(b). 
The complete video sequence is attached as dc500_mci_6_21_81.avi. 
 

 

Figure 9. Frame 470 interpolated from frame 400 and frame 500. (top) interpolated frame 
(bottom) difference between interpolated and original frame. From left to right: scheme 3, 4,5 

Figure 10(a). Motion compensated interpolation for the 500-frame sequen
different number of reference frames. For left to right: 6, 21, 81 reference 
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With different schemes, different amount of overhead for the weights and offsets are also introduced. For 
a fair comparison, rate-distortion curves are plotted including the rate due to overhead as shown in figure 
11. The rate for the uncompressed 352x240 frame in YUV 4:2:0 format is 1013760 bits/frame. The 
weights range from 0~1 and are quantized to 4 bits per weight. The offsets are also quantized to 5x10-5 of 
the intensity range (0~255) and can be represented by 12 bits. There are 10 triangle meshes for the digital 
camera sequence. One set of motion parameters are quantized to 114 bits. 

 
 

 

From the R-D curve, scheme 5 could improve 2 dB in PSNR compared to scheme 1 for certain rage of 
rate. Scheme 3,4,5 have similar performance although scheme 5 is always the best. With 81 reference 
frames (compression ratio about 6), 39 dB can already be achieved. Even for 21 reference frames 
(compression ratio about 25), 32 dB can still be achieved. 

To conclude, different schemes should be adopted for different applications. For applications without 
residual coding, scheme 3 is a good choice since it doesn’t have the discontinuity effects. For applications 
with residual coding, scheme 5 is a better choice since it minimizes the energy of residual and residual 

Frame 430

Figure 10(b). Motion compensated interpolation for the 500-frame sequence using 
different number of reference frames. For left to right: 6, 21, 81 reference frames. 

Figure 11. Motion compensated interpolation for the 500-frame digital camera sequence with 
different schemes. 6, 11, 21, 41, 81, 161 reference frames are used. Source rate is 1013760 bits/frame



coding can compensate the discontinuities. However, the impact of rate from overhead should be 
considered, especially for low-rate case where overhead could take a significant amount of the entire rate. 

Another example of motion compensated interpolation for car sequence is shown in figure 12. The 
complete video sequence is attached as car150_mci_2_5_17.avi. 

 

 

IV Conclusion 
In this project, estimation of 3-D motion as well as 3-D shape for an object in video se
These shape and motion information can be used for various video-processing appl
represent the video sequence more efficiently and variously. 

 
Reference: 
[1] PhotoModeler demo-version: www.photomodeler.com 

[2] Chapter 7, "Video Processing and Communications" by Wang, Ostermann, and Zha

Attached video file: 
1. dc_motionEst_syn.avi   2. dc_motionEst_err.avi  3. dc_tracked.avi 
4. dc_stabilized.avi  5. dc500_mci_6_21_81.avi  6. car150_mci_2_5_17.avi 

Attached source code: 
1. motionEst.c++    2 .objectStabilized.c++    3. MCInterpolate.c++ 

(These are main programs only, c++ classes are not provided since too many are involv

Figure 12. Motion compensated interpolation of the 150-frame sequence u
number of reference frames. For left to right: 2, 5, 17 reference frames. 
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