
Multiple Camera Tracking 
Helmy Eltoukhy and Khaled Salama 

Stanford image sensors group 

 Electrical Engineering Department, Stanford University 

 
 Tracking of humans or objects within a scene has been studied extensively. We 

present a multiple camera system for object tracking. The system employs uncalibrated 

cameras and depends on the motion-tracking algorithm to achieve both point 

correspondence and image registration. The system is capable of switching between 

different cameras to achieve the best tracking conditions of the object. A simple 

communication scheme is established between the cameras in order to achieve both 

robust tracking and occlusion prevention.  

 
1. Introduction 

     Recently multiple sensor environment gained interest within academia. The 

problem of having multiple sensors covering a relatively small environment and 

interacting with each other is of huge interest due to great number of problems that arise 

which spans different areas of research. Those sensor networks provide redundant 

information due to their large number and their overlap that can be used as a means to 

implement robust algorithms or to achieve better performance. Those sensors can be 

biological, chemical, temperature, pressure, audio, image or video sensors. They should 

be able to communicate with each other wirelessly so as to minimized the infra structure 

needed for their deployment. 

     Object tracking in a video sequence has been studied extensively for surveillance 

purposes. The ability to detect an object and then later tracking is of great interest in 

many applications like security, missile tracking and rescue operations. The traditional 

tracking algorithms are designed either to track a single object within the field of view of 

the camera or to detect multiple objects within the same scene and both cases depends on 

using a single camera. Recently there has been some work in multiple camera  

environments, in which an array of cameras are used to image the same scene. The main 

application for such a system is for 3D modeling of objects like in light fields. It was also 



used to track multiple objects in the scene such that each camera is dedicated to an object. 

Only recently people started to consider using multiple cameras to track a single object in 

the scene. This has the advantage of having more information about the object being 

tracked. 

 In this project we present a system in which two cameras at 180 degrees are used 

to track an object in the scene. This provides more robust tracking since the camera 

system is capable of switching between the 2 camera view for better tracking of the 

object if it is outside the field of view of one of them or if it is occluded by an object. 

Ideally the system consists of three main parts:  

a) Object tracking: In which each camera is tracking the object independently and 

producing an estimate of its position with some kind of an error measure 

b) Real time communication: each camera should be able to send the position and 

error information to a central node to be processed 

c) Point correspondence: a central node should be able to achieve point 

correspondence between the two cameras so as to confirm the position of the 

object and based on the make some decision on what action to take. This is done 

by building a model and using calibrated points to estimate the parameters 

In reality we had to simplify the system so as to be easily done with the class project 

period. The system currently looks like the following: 

a) Object tracking: a two-camera system is used to capture 2 sequences of the scene 

that are later are processed independently to track the object. The output of this 

stage is a matrix which includes the estimated object position and an error 

measurement for each scene within the sequence 

b) Communication: The matrices obtained from the previous stage are operated in 

sequence in order to simulate the communication part between cameras and 

central node 

c) Point correspondence: After trying different models for the scene it was apparent 

that the accuracy of this registration problem is really hard and it can not be 

trusted to give accurate results. So we switched to a dynamic real-time point 

correspondence that depends on the tracking algorithm. And based on that we can 

access the exact location of the object and determine which view is better to see. 



    

 

2. Optical Flow and Feature Tracking 

The brightness constancy assumption is vital to the successful implementation of 

correlation or gradient-based optical flow estimation algorithms, i.e., ψ(xk+1, t+∆t) = 

ψ(xk, t), where ψ(x, t) is the frame intensity at location x and time t. Accordingly, all 

methods discussed herein make ample use of this assumption. . First of all, any thriving 

feature tracking algorithm must be predicated upon a reliable optical flow estimation 

algorithm which is simple enough to be implemented at 30 frames per second or higher. 

Such stringent requirements preclude the use of computationally intensive methods such 

as that of Fleet and Jepson.  Furthermore, since it is well-known that gradient-based 

methods, such as Lucas-Kanade, are fairly accurate when applied to subpixel optical flow 

estimation, as well as computationally tractable, a logical first step is to explore the 

feature tracking scheme proposed by Shi and Tomasi.  

 

2.1 Shi and Tomasi Feature Tracking 

This algorithm employed the use of Lucas-Kanade on carefully chosen “corner” 

points. Intuitively, it is clear that good features constitute those with large spatial 

gradients in two orthogonal directions. Since Lucas-Kanade involves solving the optical 

flow equation iteratively assuming the displacement is characterized by constant velocity 

as given by, 
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the two by two spatial gradient matrix can be used to determine the quality of each 

possible corner point, where the gradients are summed across an n x n block. Tomasi, et 

al. suggests that a reasonable criterion for feature selection is for the minimum eigenvalue 

of the spatial gradient matrix to be no less than some λ. This ensures that the matrix is 

well conditioned and above the noise level of the image so that its inverse does not 

unreasonably amplify possible noise in a certain critical direction, i.e., there are sufficient 



spatial gradients in two orthogonal directions. Once these features are located, the Lucas-

Kanade optical flow algorithm can be applied. 

 

2.2 Using Lucas Kanade for optical flow estimation 

Although ostensibly straightforward, the equation given above can be set up in a 

myriad of different ways. For instance, the number of taps for both the spatial and 

gradient derivatives, the windowing function for the spatial gradient and the block size 

are all unspecified. Rather than reinventing the wheel, we refer to a close variant of the 

implementation used by Fleet, et al. Thus, the spatial derivative vector used is 1/12[ -1 8 

0 -8 1]. This filter is used in each dimension and acts upon the sum of both images in 

order increase the accuracy of the solution through smoothing of the spatial gradients. 

Furthermore, in addition to using a simple 2 tap temporal derivative filter, spatio-

temporal Gaussian smoothing is applied initially to enhance the accuracy of the velocity 

estimation by removing possibly “distracting” high frequency components.  

 

2.3 Object Tracking via Lucas Kanade 

The previous two results were then combined in order to track objects of interest 

in the scene. A synthetic sequence of a moving black cross on a white background was 

generated so that groundtruth data would be available. First, user initialization was 

required in order to manually indicate the object to be tracked. Then the n x n blocks in 

the region of interest which met the minimum eigenvalue criterion would be chosen as 

current corner points to be tracked. The motion vectors for each of these corner points 

could then be calculated using Lucas-Kanade. Our particular implementation used an 

average (rounded to the nearest pixel) of the motion estimates of all the feature points. 

Corner blocks are updated using the calculated, rounded motion vectors and those that 

fail to meet the minimum eigenvalue criterion are culled out. Plots of calculated motion 

of the synthetic moving object and the associated groundtruth motions are shown below.  

 

 



 

Figure 1   Comparison of groundtruth motion versus estimated motion using Lucas Kanade optical 

flow estimation. Note the errors in the latter portion of the sequence. 

   As can be seen from the figure, the estimated motion matches perfectly with the 

actual motion in the scene for about the first 25 frames. However, because there is no 

periodical corroboration with the original manually selected region of interest, invariably 

drift sets in and the features that are tracked are no longer those corresponding to the 

desired object. Indeed, Shi and Tomasi propose affinely mapping the object back to some 

stored template to eschew the onset of drift.  Furthermore, Lucas-Kanade optical flow 

estimation, although producing accurate angular estimates of the displacements typically 

exhibits large errors in displacement magnitudes if iteration towards convergence is not 

performed at each point. Since what is desired is not absolute accuracy, but a quick and 

reasonable estimate of the object’s location with some indication of the tracking 

confidence, Lucas-Kanade although useful for high-speed, accurate optical flow may not 

be the proper choice for demonstrating multi-camera feature tracking. Hence, robustness 

will be provided by the multiplicity of viewing angles, rather than the complexity or 

accuracy of each viewer’s optical flow estimation. 



 

2.4 Block-Based Motion Estimation 

Since sub-pixel optical flow is not required and the interframe motions 

encountered may well span several pixels, block-based motion estimation should be 

sufficient for reasonable object tracking. Given an accurate window size, a sum of 

squared differences (SSD) error criterion applied to sufficiently sized blocks can satisfy 

the desired aforementioned requirements for multi-camera object tracking. The basic 

interframe motion estimation error is given by, 
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where n1 and n2 are the width and height of the block, m and n are the components of the 

motion vectors, and the corresponding pixel values in the ith and (i+1)th frames are 

differenced and squared. The difficulty in block-based motion estimation is ensuring that 

the current window is sized appropriately for the tracked object, otherwise if it is too 

large, the SSD error will be overwhelmed by background information, while an 

undersized window can easily drift and lose the object completely when inundated by a 

sea of diminutive spatial gradients. 

 

2.5  Adaptive Window Sizing 

Several techniques were developed and tested for reliable adaptive sizing of the 

object tracking window to deal with difficulties arising from motion perpendicular to the 

camera’s sensor plane. Two of the tested techniques are described below. 

2.5.1 Four Corner Method 

This technique involves dividing the initially rectangular region of interest into 

four quadrants. Motion vectors can then be calculated for each quadrant independently. If 

the object is simply translating, the four quadrants will ideally have identical motion 

vectors and the window size will be unchanged. However, if the camera is zooming in 

and the object appears to be growing, the motion vectors will be divergent and cause the 

window size to increase. The window size can be, in effect, any quadrilateral that is 

approximated by piecewise constant segments, i.e., any four rectangles with a common 

central point. Although this method is appealing at first glance, problems can arise when 



any one of the four windows slips off its assigned region. If this occurs, the window 

grows uncontrollably large and fails to reasonable track the object (see figure below). 

 

 This method can be improved with the addition of a fifth region, a central, 

rectangular region of interest. Furthermore, the four corner regions would only be 

responsible for the sizing of the central window rather than its translatory motion. This is 

accomplished by continually dividing the central window into four quadrants. Five 

motion vectors are calculated at each iteration, one for the main central window and the 

others for the four quadrants of the window.  This eliminates unwanted drift by any of the 

four quadrants and allows for robust motion estimation using the highly accurate central 

window. In general, this technique fared better than the first, yet it was still subject to the 

perils of drift in extended sequences due to the fact that errors can continually accumulate 

without bound.  

 

 

Figure 2   Variant of the Four Corner adaptive window sizing technique. The upper left quadrant 

has lost the object completely. 

 

2.5.2 Corrleation-Based Adaptive Window Sizing 

To overcome error accumulation, some sort of feedback is necessary that 

continually forces the window to converge back to some master object aspect ratio.  In 

order to implement such overriding control of the window size, the original region of 

interest which is manually specified in the initialization stage can be stored for future 



comparison. Instead of dividing the region of interest into multiple regions, the entire 

window will be used for block-based motion estimation with a block size equal to the 

window size. Thus, only one motion vector is calculated at each iteration. Furthermore, 

once the motion vector is calculated, the current window size is progressively varied and 

successively compared to a resized version of the stored object image. The window then 

assumes the size of the comparison with the smallest SSD. This correlative approach 

actually worked so well that instead of a purely frame differencing comparison for 

estimation of the motion vectors, a weighted portion of the correlative (with the stored 

image) error is added to the standard interframe SSD. Hence the error calculated now 

becomes, 
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where a1 is the weight given to each portion of the combined SSD error (interframe and 

correlative) and sc
’(x0,y0,0) is the resized stored template image. Some restrictions were 

necessarily added in order to prevent uncontrolled convergence to unreasonable window 

sizes. Foremost was the restriction of minimum window size since optical flow 

estimation can become unreliable with decreasing dimensions of the comparison block. It 

is this last correlative method that is used with the multi-view feature tracking algorithms 

to be discussed in later sections. 

 

2.6 Occlusion Detection 

In order for any multi-view algorithms to be successful, they must have some 

real-time indication of the algorithm’s object tracking reliability. Since a variant of a SSD 

error criterion is used, this can to first order give a reasonable assessment of each 

camera’s tracking confidence. However, if a single camera’s algorithm is to assess 

whether or not occlusion has occurred, it must have some more sophisticated technique of 

evaluating its SSD error. Unfortunately, a simple, invariant error threshold cannot be 

used since it is not apparent at any point what value of error is too high. This is due to the 

fact that various changes in object appearance, size and shape as well as varying 



backgrounds can heavily influence the SSD error value. Thus, tracking may still remain 

accurate even when errors become larger than they were initially. To deal with such 

issues, a simple moving average of minimum correlative SSD errors of the last k 

(currently 5) frames can be calculated and compared with the current minimum 

correlative error. If the current minimum error is some c ( where  c>1) times greater than 

the moving average, then occlusion is said to have occurred. Accordingly, occlusion 

detection becomes adaptive to the current state of detection quality rather than imposing 

some arbitrary, absolute limit. 

 

 

Figure 3   A ball has rolled behind the synthetically added noisy box. The window remains fixed at 

the point of last motion detection since occlusion has occurred.  In the bottom frame, the object 

tracker has redetected the ball and resumes normal operation. 

 



2.7 Object Redetection 

Finally, the last issue of concern in single-camera object tracking, is that of object 

redetection once occlusion has occurred. Although in its most general form, this can be 

akin to initial object detection, which is a difficult problem in its own right, the problem 

can be slightly simplified by constraining the search area of the detection to the 

neighborhood in which the object was last detected. Furthermore, it can be further 

assumed that the object (once it reappears) will be of similar size to its last known 

dimension. These simplifications allow the development of a heuristic detection 

algorithm that works reasonably well in a variety of scenes. First, once occlusion has 

occurred, the object tracker shifts gears and becomes a simple motion detector whereby 

the tracking window tracks the largest temporal pixel intensity change in an enlarged 

search area. If there are no intensity changes that are some value times greater than the 

noise level, the window remains stationary until either motion or the object is detected. 

The object is said to have been detected if the current correlative SSD is some value d 

(where d < 1) times the moving average. Once redetection occurs, the object tracker 

returns to normal and standard object tracking resumes (see figures above). 

 

3. Camera\Scene Calibration 

     Two different models of the point correspondence between the camera views were 

considered. The first is an affine model in which 3 points are the minimum number of 

points which are needed to estimate the parameters in the scene.  In order to achieve 

better accuracy more pixels were used and least means squares was used to estimate the 6 

parameters. The second model used was a prespective model in which the minimum 

number of pixels needed is 4. Again we used more pixels distributed along the whole 

field of view. It was clear that the results achieve d by those models were not sufficient 

and a better way was need to achieve the point correspondence.  

 

3.1 Dynamic Point Correspondence 

     In this model we depend on the fact that there is no need to achieve accurate point 

correspondence in the whole scene but rather along the motion trajectory or the object. 



Based on that and on the fact that the first few frames are very accurate estimate of the 

object, we perform the following algorithm and a block diagram is attached: 

a) use an affine model to achieve correspondence between the 2 frames. Estimate the 

model parameters from the first 3 frames 

b) check for each frame if the error is smaller than a certain threshold. If yes then add 

this new point to the model and resolve for the parameters using least mean squares. 

If the error is large  then add this point to a temporary set that is used to have other 

estimate of the parameters 

c) For the next frame check for the point correspondence using the temporary set and 

main set. The one with smaller error is used as the main transformation model 

parameters set 

d) Go to step b until tracking ends 

 

4. Camera-Central Node Communication 

    A very simple communication simulation and detection scheme is implemented that 

works fine. In this stage we go through the results of each tracking step frame by frame. 

If the error exceeds a certain criteria we disregard this camera and use the other camera. 

If both cameras have high error we indicate the inability to track. The criteria is very 

flexible and we used the moving average error in the previous frames, the percentage 

with respect to the maximum error recorded.  It seems that such criteria is sufficient 

enough to make a decision on which camera to use. As an exmple, here are the error 

plots and figures for the 2 cameras at which occlusion occurs for one of the cameras and 

not for the other 

 

 



       
       (a)      (b) 

   (c)      (d) 

Figure 4: a) view from first camera, b) view of the second camera, c) tracking error  

estimate for first camera, d) tracking error  estimate for second camera 

 

5. Future work 

There are some simple extensions to this work which will render it very effective and 

useful: 

1) Use an SDK to communicate with the camera directly so that we 

can achieve real time operation and not just record and operate 

on sequences 

2) Provide the cameras or the laptops they are attached to with a 

wireless card to achieve this real time communication 

mechanism 



3) Explore more robust tracking algorithms and check for simple 

fast versions 

4) Refine the decision making step by making a more complicated 

stochastic model of the error so as to make the decision making 

more robust 
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Division of the work: 

Helmy: 

1) implemented lucas and kanade for optical flow 

2) implemented block matching algorithm 

3) implemented the tracking algorithm 

4) implemented occlusion detection and object resizing 

khaled: 

1) implement the dynamic point correspondence 

2) implemented the synthetic test sequences  

3) acquired the various video clips and impelemted the test benche environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATLAB Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Test of Shi,Tomasi and Kanade image tracking -- EE392J Final Project                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

numb=40; % number of frames 

motion=zeros(2,numb); 

 

%generate random motion 

for m=1:numb, 

    motion(1,m) = round(rand(1,1)); 

    motion(2,m) = round(rand(1,1)); 

end 

motionsum = cumsum(motion,2); 

sigma=5; %standard deviation of smoothing mask 

image1=ones(200,200); 

image1(45:55, 30:70)=0; 

image1(30:70,45:55)=0; 

 hmsk = 1/12*[-1 8 0 -8 1]; %derivative filters  

 vmsk = 1/12*[-1; 8; 0; -8; 1]; 

 block=16+2; 

 mvs=zeros(2,numb); 

smsk = fspecial('gaussian', ceil(3*sigma), sigma); %smoothing mask 

points= getFeatures(image1, block-2,block-2,.6) %get good block features 

centroid = round(sum(points,2)/size(points,2)+block/2) 

  

for m=1:numb, 

 

    image2=ones(200,200); 

image2((45:55)+motionsum(1,m), (30:70)+motionsum(2,m))=0; %generate next frame 

image2((30:70)+motionsum(1,m), (45:55)+motionsum(2,m))=0; 



vs=zeros(2,size(points,2));     

%iterate over all feature blocks and calculate motion vectors 

for n=1:size(points,2), 

    if n <= size(points,2),    

    curr = image1(points(1,n)+(1:block)-1,points(2,n)+(1:block)-1); 

       next =  image2(points(1,n)+(1:block)-1,points(2,n)+(1:block)-1); 

         

      %solve for gradients 

       smpic= conv2(.5*curr+.5*next, smsk, 'same'); % smooth sum of frames 

       xgrad = conv2(smpic, hmsk, 'valid'); 

       xgrad =xgrad(3:(block-2),:); 

        ygrad = conv2(smpic, vmsk, 'valid'); 

        ygrad =ygrad(:, 3:(block-2)); 

        temp = sum(sum(xgrad.*ygrad)); 

        A = [sum(sum(xgrad.*xgrad)) temp; temp sum(sum(ygrad.*ygrad))]; 

        if min(eig(A)) > .01, 

        tg = conv2(next-curr,smsk,'same'); 

        tg = tg(2:(block-3),2:(block-3)); 

        B = sum([(tg(:).*xgrad(:))'; (tg(:).*ygrad(:))'],2); 

        % Solve for the velocity 

        v = A \ (-B); 

        vs(1,n) = 1*v(2)+0*vy;  

        vs(2,n) = 1*v(1)+0*vx; 

        %pointstest= getFeatures(image1, block-2,block-2,.6); 

        points(1,n) = points(1,n) + round(2*vs(1,n)); 

        points(2,n) = points(2,n) + round(2*vs(2,n)); 

    else 

        atemp = points(:,1:(size(points(:,2))-1)); 

        points = atemp; 

        n=n-1; 

    end 



end 

    end 

    image1=image2; 

    %store motion vectors 

    mvs(1,m) = round(sum(round(2*vs(1,:)))/size(vs,2)); 

    mvs(2,m) = round(sum(round(2*vs(2,:)))/size(vs,2)); 

end 

%plot estimated motion versus actual motion 

subplot(2,1,1); 

plot(motionsum(1,:), motionsum(2,:),'o'); 

subplot(2,1,2); 

plot(cumsum(mvs(1,:)),cumsum(mvs(2,:)),'o'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [points, val] = getFeatures(image, sizem, sizen, thresh); 

% Extract good tracking features with minimum eigenvalue greater 

% than thresh and window size sizem by sizen, a la Tomasi and Kanade. 

hmsk = [-.5 0 .5]; 

vmsk = [-.5; 0; .5]; 

points=[]; 

val=[]; 

sizem=sizem+2; 

sizen=sizen+2; 

sigma = sqrt(sizem*sizen)/4; 

smsk = fspecial('gaussian', ceil(6*sigma), sigma); 

 

 

for m = 1:4:(size(image,1)-sizem+1), 

    for n = 1:4:(size(image,2)-sizen+1), 

        curr = image(m:(m+sizem-1),n:(n+sizen-1)); 



        xgrad = conv2(curr, hmsk, 'valid'); 

        xgrad =xgrad(2:(sizem-1),:); 

         

        ygrad = conv2(curr, vmsk, 'valid'); 

        ygrad =ygrad(:, 2:(sizen-1)); 

        

        temp = sum(sum(xgrad.*ygrad)); 

        mat=[sum(sum(xgrad.*xgrad)) temp; temp sum(sum(ygrad.*ygrad))]; 

        minlamb=min(eig(mat)); 

         

        if minlamb > (.5*thresh*max(image(:))^2*sqrt(sizem*sizen)) 

             vect = [m;n]; 

             points = [points vect]; 

             val = [val minlamb]; 

         end 

     end 

 end 

 

%%%%%%%%%%%%%%%%%%% 

%% generation of synthetic test sequences 

%%%%%%%%%%%%%%%%%%%%% 

clear all; 

close all; 

 

frame=0.3+0.5*rand(100,100); 

 

x=zeros(7,7); 

rcam_offset_x=30; 

rcam_offset_y=20; 

rcam_width=60; 

rcam_height=60; 



lcam_offset_x=10; 

lcam_offset_y=20; 

lcam_width=60; 

lcam_height=60; 

xold=50; 

yold=50; 

image=frame; 

image(xold-4:xold+2,yold-4:yold+2)=x; 

scene=zeros(100,100,200); 

left_camera=ones(lcam_width,lcam_height,200); 

right_camera=ones(rcam_width,rcam_height,200); 

scene(:,:,1)=image; 

left_camera(:,:,1)=rot90(image(lcam_offset_y:lcam_offset_y+lcam_height-

1,lcam_offset_x:lcam_offset_x+lcam_width-1)); 

right_camera(:,:,1)=flipud(fliplr(rot90(image(rcam_offset_y:rcam_offset_y+rcam_height

-1,rcam_offset_x:rcam_offset_x+rcam_width-1)))); 

%imshow(image) 

k=1; 

%% generate random motion for a box 

for i=1:20 

    par=6*(rand(1,2)-0.5); 

  for j=1:10 

      image=frame; 

      xpos=round(xold+par(1)); 

      ypos=round(yold+par(2)); 

       

     if (xpos>20)&(xpos<80)&(ypos>20)&(ypos<80) 

        image(xpos-4:xpos+2,ypos-4:ypos+2)=x; 

     else 

         break; 

     end 



      xold=xpos; 

      yold=ypos; 

      scene(:,:,k)=image; 

left_camera(:,:,k)=rot90(image(lcam_offset_y:lcam_offset_y+lcam_height-

1,lcam_offset_x:lcam_offset_x+lcam_width-1)); 

right_camera(:,:,k)=flipud(fliplr(rot90(image(rcam_offset_y:rcam_offset_y+rcam_height

-1,rcam_offset_x:rcam_offset_x+rcam_width-1)))); 

 

      k=k+1; 

 

      %subplot(3,1,1) 

      %imshow(image);      

        

    end 

end 

%%%%% 

%Camera point correspondance detection 

%%%%%% 

clear all; 

close all; 

first_camera=zeros(240,320); 

second_camera=zeros(240,320); 

for i=1:10 

tmp=aviread('video4',i); 

tmp1=rgb2ntsc(double(tmp.cdata)); 

first_camera=first_camera+tmp1(:,:,1); 

tmp=aviread('video5',i); 

tmp1=rgb2ntsc(double(tmp.cdata)); 

second_camera=second_camera+tmp1(:,:,1); 

end 

first_camera=255*first_camera/max(first_camera(:)); 



second_camera=255*second_camera/max(second_camera(:)); 

 

subplot(2,1,1) 

imshow(first_camera,[]) 

subplot(2,1,2) 

imshow(second_camera,[]) 

[inx,iny]=ginput(8); 

new_x=inx(2:2:8); 

new_y=iny(2:2:8); 

old_x=inx(1:2:8); 

old_y=iny(1:2:8); 

 

A=[old_x(1) old_y(1) 1 0 0 0 -1*old_x(1)*new_x(1) -1*old_y(1)*new_x(1); 

    0 0 0 old_x(1) old_y(1) 1 -1*old_x(1)*new_y(1) -1*old_y(1)*new_y(1); 

     

    old_x(2) old_y(2) 1 0 0 0 -1*old_x(2)*new_x(2) -1*old_y(2)*new_x(2); 

    0 0 0 old_x(2) old_y(2) 1 -1*old_x(2)*new_y(2) -1*old_y(2)*new_y(2); 

     

    old_x(3) old_y(3) 1 0 0 0 -1*old_x(3)*new_x(3) -1*old_y(3)*new_x(3); 

    0 0 0 old_x(3) old_y(3) 1 -1*old_x(3)*new_y(1) -1*old_y(3)*new_y(3); 

     

    old_x(4) old_y(4) 1 0 0 0 -1*old_x(4)*new_x(4) -1*old_y(4)*new_x(4); 

    0 0 0 old_x(4) old_y(4) 1 -1*old_x(4)*new_y(4) -1*old_y(4)*new_y(4); 

]; 

parameters=pinv(A)*[new_x(1);new_y(1);new_x(2);new_y(2);new_x(3);new_y(3);new_

x(4);new_y(4);]; 

 

 

 


