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ABSTRACT  
Most conventional digital cameras use single capture to get an image of the scene. If long exposure 
time is used, not only bright regions in the scene saturate, but also motion blur causes further 
degradation in the image quality. If short exposure time is used, motion blur problem is not that 
severe, but the SNR of the final image is poor. Recent work has shown the availability of very high 
frame rate CMOS image sensors are available today [1] and SNR, dynamic range (DR) and motion 
blur properties still images can be enhanced using these cameras [2]. In this work, we explain how to 
incorporate motion estimation to further reduce the motion blur of a still image while getting better 
SNR and DR performance. 
 
I. INTRODUCTION 
 Today’s conventional cameras use a single capture to get an image of the scene. 
This results in a trade-off, in the sense that the camera has to use a single exposure time 
for the capture. That means, one has to choose between either a short or long exposure 
time. A short exposure time means you get relatively motion-blur free image, but your 
image will end up very noisy. However, a long exposure time means you get a good 
SNR. But if there is motion in the scene, you will get motion blur.  
 To illustrate this effect, please refer to figure 1.  
 

 
(a) (b) 

Figure 1. Two images illustrating the artifacts of single capture of a scene with motion. (a) Short 
exposure time. (b) Long exposure time. 

 
 Both images are simulated images from a noisy digital still camera, when the 
scene moves globally. Both readout and shot noise of a typical CMOS imager is 
simulated. No fixed pattern noise or reset noise is added; because these noise components 
are successfully cancelled with a technique called correlated double sampling (CDS). The 
image on the left is a single capture with a short exposure time. As you see, it almost has 
no motion blur, however, it is disturbingly noisy. The image on the right has been taken 



by exposing the camera for a much longer time, which gives a better SNR, but leads to 
blur due to motion. Ideally what we want is an image with both high SNR and low 
motion blur.  

What is equally important also is, dynamic range (DR) of the camera, even when 
there is no motion in the scene. When you have a short exposure time, which means you 
can see the bright parts of the scene well in the final image, but the dark parts are 
underexposed and cannot be seen in detail due to noise. If you have long exposure times, 
you can capture the dark parts nice, but then the bright parts of the scene will saturate the 
pixels that they shine on. Ideally, one would want to capture both dark and bright parts 
well. When there is both motion in the scene and the scene is high DR, things get even 
worse, in terms of final image quality, when a single capture is used. You either get a 
noisy image with less motion blur but non-visible dark areas, or a less noisy image but 
with high motion blur and with bright parts of the scene saturated. 

The goal of this project is to propose and simulate an algorithm that improves 
motion blur, SNR and DR problems of conventional digital cameras with the use of high 
-speed CMOS cameras, which are available today. 

 
II. PROBLEMS ADDRESSED AND ALGORITHMS 
 Our approach to solve the above-explained problem is, in general, to use high 
speed capabilities of CMOS image sensors, run them in a video or multicapture mode, get 
many images of the scene with varying exposure times, and incorporate motion 
estimation together with a noise estimation algorithm that fits into a CMOS imager to get 
motion-blur free, high SNR and high DR images.  
 By multicapture, we refer to a technique, where you continuously read all pixels 
values at very high speed without destroying the charge collected at each pixel while 
integrating the light signal. So, although you have a long exposure time for the last image 
you read, the intermediate images have less and less exposure time, thus less and less 
motion blur and SNR. Also, if you read the reset image, that is the image right after you 
reset the sensor, you can subtract the reset image from all other captures to get rid of reset 
noise and offset fixed pattern noise from your images. We are proposing a method, where 
one can use a point’s pixel values at different captures along its motion trajectory to 
estimate for a final pixel value that is less noisy, not blurred by motion and higher DR. 
 While multicapture is only available to CMOS imagers, one can in theory apply 
our proposed algorithm to normal video mode CCD imagers where you destroy the 
charge when you do a read, and having differential images each with small exposure 
time, and adding them up to get higher and higher exposure time images (with the 
expense that you have to increase read noise as total exposure time increases, because 
each frame’s read noise adds when you sum them up). However, the key thing is the 
speed of the imager. CCD’s are not that fast to take short exposure time images. The 
minimum motion blur you can get in the final image will be as little as the motion blur of 
the minimum amount exposure time image you have. So, the algorithm depends on 
taking images very fast, such that some have minimum motion blur, but low SNR, some 
have lots of motion blur, but high SNR. The algorithm will combine those images to get a 
better final one. However, the readout speeds of CCD’s are very slow, such that you 
cannot get lots of frequently spaced minimum motion blur pictures with a CCD camera. 
This is only possible with the CMOS imagers [1].  Additionally, with multicapture, you 



have less read noise for each frame you capture compared to destructive read case 
(normal video-mode operation), we focused on a CMOS imager used in a multicapture 
mode to apply our algorithm.  
 So, the idea is to do multicapture at high speeds, and get N images of the scene 
each with longer exposure time. Then do motion estimation on the captured images. Then 
follow each pixel on the first image on its trajectory at the later frames and collect data to 
estimate the photocurrent that point in the scene induces. Then use these photocurrent 
estimates to construct a motion blur free, high SNR and DR image. Previous work [2] has 
used data within one pixel to achieve the above goals. We tried to incorporate motion 
estimation into it to get better results. But first, to understand what estimator we should 
use to estimate the photocurrent, we should model a CMOS imager. 
 

1. CMOS Image Sensor Model 
We are not going to go into a detailed model of CMOS image sensors here. We 

are going to use a simplified model that allows us to derive an estimator we can use.  
A CMOS imager is basically a reverse biased photodiode. When light shines upon 

it, some of the photons create electron-hole pairs and they are swept away from each 
other at the reverse biased junction, and collected on the intrinsic capacitance of the 
diode. As the charge collects on the intrinsic capacitance of the diode, the reverse bias 
voltage across it drops. There is a minimum value that this voltage is allowed to drop, in 
order to avoid blooming of the charges to other pixels. That is why, a pixel has a 
maximum amount of charge it can collect. This is called well capacity. At low light, not 
the full capacity is used, but at high light, the pixel saturates (figure 2). 

 
Figure 2. An illustration of a CMOS imager pixel and the charge it collects 

 
 
 The charge that collects on the capacitor consists of photocurrent (iph) charge, 
dark current (idc) charge, shot noise, reset noise, readout noise, gain FPN and offset FPN. 
(FPN is fixed pattern noise, which is caused by variations of CMOS processing, across 
the pixels) The offset FPN and reset noise are cancelled by correlated double sampling 
(CDS) where you read out the pixel values right after you reset them and subtract this 
reset image from the image after exposure. Although this would double the readout noise 
because reset frame has its own readout noise, which is independent from that of exposed 
image’s, because readout noise is very small compared to reset noise and offset FPN 
generally, we prefer to do that. Gain FPN and dark current are also negligible for the high 
speed CMOS imager we have in our lab. So, taking that as a reference, we do not include 
dark current, offset and gain FPN and reset noise in our model. So, for a CDS’ed pixel, 
the charge that collects can be modeled as: 
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where, T is the exposure time, UT is the shot noise with zero mean and variance qiphT (q 
is electron charge) and VT  and Vo are read noises of image with exposure time T and 
reset image (zero mean, variance ). Similarly, the charge collected after k2
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where τ is the exposure time for single capture, and Uj is the shot noise collected during 
jth exposure. 
 Using this sensor model, we can derive the estimator we are going to use. 
 
 2. Photo-Current Estimation: 
 Suppose we have the trajectory of a point in the scene on the pixel plane, and the 
transition times (in integer multiples of τ) of that point to each pixel location. The 
algorithm estimates these motion trajectories from the multiple capture images from the 
camera with a motion estimation algorithm we will describe in the following pages. We 
want to use the integrated photo-charge values at correct pixel locations on the sensor 
plane during correct times to estimate for the photocurrent that a moving surface at the 
scene induces in the sensor.  
 To make everything easier, let us give an example. Suppose we have a 3x3 sensor 
plane as shown below: 
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Figure 3: The Sensor Plane 
 
 Suppose we have a moving surface that initially shines on pixel A. Say after 3τ, it 
moved to pixel B on the pixel plane. And 2τ after that, it moved to pixel C. Suppose this 
surface was a bright surface and all the other things in the scene have darker surfaces.  
 The integrated charge and the charge values that are read out will be as follows: 
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Figure  4: The collected charge values versus time at pixels A,B and C. 
 
 For the sake of simplicity, assume that we have a total of 6 captures. As seen from 
the charge-time graphs for these 3 pixels, the slope of the graph (the photo-current that 
the moving surface induces at a pixel) is equal during when the bright point in the scene 
shines on them. These times are from 0 to 3τ for pixel A, from 3τ to 5τ for pixel B, from 
5τ to 6τ for pixel C. These transition times and the locations of the pixels A,B and C are 
found by the motion detection and estimation algorithm.  
 Now it comes to decide how to use the charge values that are read out to estimate 
for the correct photocurrent that the surface induces.  We have: 
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 The i’s in the above formulae are the photocurrents (iph) induced at pixels A, B 
and C, and they change with time, as different lights shine on them. But they are constant 
and same across all three pixels during the time segments of interest for each pixel.
 The previous work [2] uses only the first 3 charge values read from pixel A to 
estimate for the photocurrent. Then it detects motion and stops here. We will use the 
relevant charge values from other pixels (B and C) also, to estimate photocurrent.  
 Define: 
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We will use the charge collected at pixel A at times τ and 2τ. Then at 3τ that pixel moves 
to B. We are going to use the differential charge accumulated at pixel B from 3τ to 4τ 
because that differential charge is induced by the same point in the scene and so on.  Now 
we have: 
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 On the other hand, if you look at the charge terms that are read from pixel A: 
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 We want to calculate a linear estimate of i, which is a weighted mean of the read 
out charge values, actually. But, as seen from above equations, AQ1 ,  

'
1
BQ and '

1
CQ  all have 

the same signal (iτ) and same amount of noise which are independent from each other. 
So, if one gives a weight w to one of these charges in the estimate, than all the others 
should get the same weight because none of them is more important than the other. So, 
one good strategy would be averaging them, and treating them as a single point. 
Averaging would decrease their variance, so that the final estimator will give them a 
bigger weight. 
 So, define: 
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and use these ’s to estimate for the photocurrent. Now because the ’s are averaged 

versions of Q’s, they have less noise. So, for each Q , if n

~

jQ
~

jQ
~

j j is the number of Q’s we are 
averaging, that is: 

∑
=

=
j

l

n

l

X
j

j
j Q

n
Q

1

~ 1     (2.2.6) 

where, Xl is the name of the pixel (like A,B,C). The effective shot noise and readout noise 

in Q  will decrease by 
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We have N captures. Given  find coefficients a
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That minimizes the MSE: 
2

^
2 )( iIE −=φ        (2.2.10) 

Subject to unbiased estimate condition: 
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 which is equivalent to: 
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Where, , q is the electron charge. τσ qiu =2

When one writes the Lagrange multipliers and takes the derivatives to get: 
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 One can re-arrange the above formulae and come up with the below equations to 
calculate the best weights as: 
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 The above scheme is done in an iterative way. That is,  is first set to 
~

1I
^
I , then the 

shot noise variance for the next iteration is estimated using this estimated photocurrent, 

then using this shot noise variance, b2 is estimated, using b2, a2 is found. Then 
^
I is 

updated. This goes on like this until you use all the Q values for that pixel. 
 Estimated photocurrent of each pixel will be used to generate the final image. 
This can simply be done as follows. If we consider the above example again, we had 3 

modified Q values for a pixel (after averaging the ones from three pixels A, B and C). 
^
I  

gives the estimated slope of the charge vs. time graph. We can simply multiply this slope 
with 6τ and get the final what-it-should-be charge value for that pixel. This number can 
turn out to be larger than 255 (which would be the largest number from an 8 bit imager 
you can get) which means DR of the final image is larger than that of the imager.  
 How we get improvement in DR this way can be intuitively explained as follows. 
Suppose we had a very bright point in the scene that is surrounded by darker regions. If 
there was no motion this point would saturate the pixel it was shining on. But if it moves 
around, it does not saturate any of the pixels because it distributes the charge it induces to 
multiple pixels. So, if you can track this pixel right and do the above algorithm, you can 
recover all of the charge it induces and get total effective well capacity for that pixel 
larger than that of the imager. So, if there is motion, DR is extended at high illumination 
edge. Also, we did not implement the technique where you use the pixel values until the 
pixel saturates to do estimation in our code, which is described in [2] and effectively 
increases DR in the high illumination end. To add this feature to our algorithm is 
relatively easy, but as we focused more on motion blur and noise reduction in this 
project, we simply did not add that feature yet. Our algorithm also increases the DR in the 
low illumination end by decreasing noise, also. The algorithm effectively decreases 
camera noise, and reduces motion blur because tracks the points in the scene during their 
motion and estimates their photocurrent and constructs the final image using those 
photocurrent estimates. 



  
3. Algorithm 
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Figure 5: Block diagram for the algorithm 
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 The scene is just a synthetic scene we construct in Matlab. It has a patch of a real 
image in the center with black area around (as can be seen in figure 1). The camera 
simulator simulates two things: 1) how many charges are collected at each pixel 2) the 
shot noise and read noise at each pixel. In order to have a realistic simulation we used 
experimentally obtained values of a typical setup for a) the read noise and b) the number 
of electrons created by the photoelectric effect per pixel per second.   
While the camera is shooting this scene a defined motion is simulated so that motion blur 
results in the images formed. We had black regions around the patch shot by the camera 
because of two reasons. The first is, that we wanted to see the effect of read noise to our 
motion estimation in the absence of light. Second reason is, for the time being we did not 
want to deal with occlusions, so that the patch stays in the view of camera during the 
whole exposure.  
 The camera simulator shoots the scene and collects the charge at a position for a 
single capture time adding the right amount of noise, and moves to its next position and 
continues charging pixels from there. The total number of captures, single exposure time, 
scene, movement of the camera, the noise values, lightning conditions, the quantum 
efficiency of the camera are all user defined. A simple ideal ADC with an automatic gain 
control is also implemented and the conversion gain is supplied to the photocurrent 
estimator.  
 After the camera simulator, we have the multiple capture images. These images 
have an increasing level of brightness and blur. It is obvious that in order to calculate 
motion vectors these images cannot be used directly. It is necessary to calculate 
differential images with constant small blur and brightness, however with much higher 
noise. From these differential images, we estimate the motion vectors that describe the 
motion in the scene during the exposure time. We use block based motion estimation, 



with a block size of 3 and search range of ±1 minimizing the sum of squared differences 
(SSD) between blocks. In order to estimate motion vectors in a robust way in the 
presence of noise we employ the following technique that Sebe suggested in his project 
presentation. Since we know the characteristics of noise of our sensor we can precisely 
say what SSD value could result purely from noise. In order to avoid wrongly calculated 
motion vectors therefore we add this known value to the SSD values of all search vectors 
that are not the zero vector, and thus favoring the zero vector by not more than just the 
appropriate amount. The search range and block size can be increased in the expense of 
computational load, but we assumed we did not need big block sizes because the imager 
we use is fast. (in [1], a 10,000 fps CMOS imager is described) 
 Then, the multicapture images and the estimated motion vectors are used to 
estimate for the photocurrent at each point in the scene. The multicapture images are in 
digital values, so conversion gain from the camera simulator is passed to the estimator to 
calculate for the corresponding charge values. 
 
III. RESULTS 
 
 We have simulated the above algorithms in Matlab. We used 16 captures (17 with 
the reset one) each with 10 ms exposure time. A read noise level of 60e-, illumination 
level of 30 photons per pixel per brightness level of the scene per 10 ms is used, which 
are typical values.  
 We have 4 pixel motion blur in our simulated scene during the entire exposure 
time. Note that this imposes that the scene moves after only 4 captures. Previous work [2] 
has to stop at pixels where it detects motion and this would be only after 4 captures for 
some pixels. But this work relies on much more capture values for a pixel to have good 
estimation of its photocurrent. Under these conditions, for those pixels where there is 
motion, previous work would do a bad job. We illustrate in following lines that our 
algorithm achieves good results. 
 Following is a portion of the cameraman image used as a patch in our scene, and 
it moves globally. The single exposure (10 ms) and last capture (160 ms) are shown in 
figure 1 of introduction. The estimated and the perfect motion vectors from first frame to 
the second are shown in figure 6. The estimated vectors are estimated using the above 
algorithm. The perfect ones are constructed by us, for comparison, as we know the 
motion in the scene a priori.  
 



(a) (b) 
Figure 6: The motion vectors: (a) Estimated (b) Perfect 

  
 As you can see, where there is ambiguity, the motion vectors are not perfect. 
However, our photocurrent estimation algorithm is tolerant to this, because when there is 
motion for a pixel, if the point replacing it has the same brightness level, then the effect 
of that would be as if motion has not occurred, because the pixel would continue 
integrating with same amount of charge. 
 Figure 7 shows the results of our photocurrent estimation, together with the ones 
in figure 1 repeated. (7.c) is the one that uses estimated motion vectors. (7.d) is produced 
using perfect motion vectors, for comparison. As you can see, although (7.d) looks better, 
both images have almost no motion blur and very reduced noise, compared to ones in 
(7.a) and (7.b). The image with estimated motion vectors have lost some parts in the face 
of cameraman, due to imperfectness of the motion estimation algorithm. 
 The std of the difference of the images at figure 7 from the original scene (which 
is a measure of how much noise and motion blur you have in the scene) are 71.31 (in 
digital counts) for 10 ms image, 37.41 for 160ms image, 12.05 for the image constructed 
using estimated motion vectors and 3.092 for the image constructed using real motion 
vectors. 
 
 
 
 
 
 
 
 



  
(a) (b) 

(c) (d) 
Figure 7: Cameraman test case. (a) 10 ms exposure image (b) 160 ms exposure image (c) Final Image 

using the estimated motion vectors (d) Final image using the perfect ones 
 
 
 

You can find the results to other test scenes in the following figures and the errors (std’s) 
of the images in the figures in the following table. 
 
 
 
 
 
 
 
 
 
 
 



 
 

(a) (b) 

(c) (d) 
Figure 8: Lena test case. (a) 10 ms exposure image (b) 160 ms exposure image (c) Final Image using 

the estimated motion vectors (d) Final image using the perfect ones 
 
 
 

 



  
(a) (b) 

(c) (d) 
Figure 9: Checkerboard test case. (a) 10 ms exposure image (b) 160 ms exposure image (c) Final 

Image using the estimated motion vectors (d) Final image using the perfect ones 
 
 

IMAGE ERRORS CHECKER LENA CAMERAMAN 
10 ms image 100.9 69.43 71.31 
160 ms image 70.79 33.84 37.41 

Const. with est. motion vectors 2.587 21.28 12.05 
Const. with perfect motion vectors 2.576 17.22 3.092 

Table 1. The comparison of errors of different test scenes  
 
 

CONCLUSION 
 
 Within the limited time, we believe we achieved good results. The preliminary 
runs with simulated scenes gave both visually and in terms of error satisfactory outcomes. 
Now, there still are a lot of things that we need to do to make this algorithm complete. 
Some of the most important ones are: 



• Use better motion estimation algorithms than block based 
• Extend the algorithm to include the extension of DR with sensor saturation. 
• Extend the algorithm to be able to handle occlusions. 
• Generalize the algorithm to deal with sub-pixel motions. 
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WORK DISTRIBUTION 
 
 It is hard to say “who did what” for our project, because we did everything 
together. Nobody basically worked independent of the other; we always came together, 
discussed what to do, how the algorithms should be, etc. Although we can say that the 
coding of the camera simulator and motion estimator were done by Ulrich, and codes that 
convert motion vectors and multicapture data to useful forms for the estimator and the 
code for the estimator were written by Ali, how to do these were discussed in detail 
before and during the coding process by both of us.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX – M FILES 
main.m 

clear all, close all; 
 
% Display Stuff 
mygray = repmat(linspace(0, 1, 256)',1,3); 
fps    = 5; 
Nplay  = 1; 
 
 
% 1) Define Sensor Characteristics 
R = 100; C = R; N = 16;  
std_v = 60; % Read noise (in e-) 
 
% 2) Define Exposure Characteristics  
dExpTime     = 10e-3; 
ph_10ms_pix  = 30; % photons per 10ms of exposure per pixel 
 
 
% 3) Definition of the scene 
    scene1 = double(imread('lena.tif','tif')); %scene = 
double(imread('testpat1.tif','tif')); 
    imshow(scene,[]),axis image 
 
    % Just a different scene 
    AA     = ones(2,2)*255; BB = zeros(2,2); CC = [AA,BB;BB,AA]; 
    scene2 = repmat(C,128,128); 
 
    % More different scenes  
    scene3 = makePatternREC; %makePatternSMOOTH; 
    figure, colormap(mygray), image(255*scene3/max(pat(:))),axis image; 
 
scene = scene1;  
pos0  = [210 200];         
off = 16;             
mask  = zeros(size(scene)); mask( pos0(1)+off : pos0(1)+R-off-1, pos0(2)+off : 
pos0(2)+C-off-1 ) = 1; 
scene = scene.*mask; 
figure, imshow(scene,[]),axis image; 
originalImage = scene(pos0(1):pos0(1)+R-1, pos0(2):pos0(2)+C-1); 
figure, imagesc(originalImage), colormap(mygray), axis image; 
 
 
% 4) Define Motion 
TotalShift = 4; 
positions  = createPositionsLin(N, TotalShift);   
            %createPositionsCirc(TimeSteps, TotalAngle, Radius) 
 
% END OF DEFINITIONS 
% BEGIN OF MAIN ROUTINES 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create the Charge Distribution in the sensor's spacetime, with the following 
parameters 
% Sensor parameters (as described above) 
% Exposure parameters 
% The scene 
% Motion parameters 
noiseflag    = 1; adcflag = 1; % If 1, adds noise/does quantization 
[Q,convgain] = createChargeDistribution(R,C,N, scene, positions, pos0, 
dExpTime, noiseflag, adcflag, std_v, ph_10ms_pix); 
Qmax         = max(Q(:)); 



% Play as movie 
figure, colormap(mygray) 
for tp = 1:N+1 
    image(255*Q(:,:,tp)/Qmax),axis image; 
    F(tp) = getframe; 
end 
movie(F,Nplay,fps)  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate the Differential Images 
% from the discrete Charge Distribution 
 
dQ = calculateDifferentialImages(Q); 
dQmax = max(dQ(:)); 
 
% Play as movie 
figure, colormap(mygray) 
for tp = 1:N 
    imagesc(dQ(:,:,tp)),axis image; 
    F2(tp) = getframe; 
end 
movie(F2,Nplay,fps)  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate the Motion Vector Field 
% using  
% Differential Images 
% Noise level lamda used to reject false motion vectors because of noise 
% Half block size hbs and search range sr 
hbs = 1; sr = 1; 
lambda = 2*sqrt(2)*std_v/(2*hbs+1); % Noise suppression factor for  motion 
vector estimation 
 
MVF = calculateMVFpix(dQ, hbs, sr, lambda); 
% Play as movie 
figure 
for tp = 1:N-1  
    quiver(MVF(:,:,tp,2), MVF(:,:,tp,1)),  axis ij, axis equal, 
    F3(tp) = getframe; 
end 
movie(F3,Nplay,fps)  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create the datastructure 'motion' from the MVF 
% This datastructure contains for each pixel in frame 1 a history of  
% where it is later at which point in time. 
motion = convert(MVF); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create the datastructures 'modQ' and 'num' from the charge distribution Q  
% and the array num.  
% 'Qmod' contains a new charge distribution that contains  
% for each pixel the amounts of charge that it created during  
% its path over different pixels of the sensor surface 
% The array 'num' keeps track of the numer of pixels per timestep over which 
each point  
% of the scene has moved on its trajectory. This information is 
% needed for correct statistical evaluation in the routine 'blurFreeImConst'. 
[modQ,num] = qModifier(Q,motion); 



 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Construct the blur free image with higher SNR and dynamic range  
% from the information in modQ, and num that was gathered over the  
% spacetime trajectory 
im = blurFreeImConst(modQ, num, dExpTime, std_v, convgain); 
figure,imagesc(im),colormap(mygray),axis image; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Do the same but use a perfect MVF (calculated from the original motion)  
% as opposed to the MVF estimted from the image data 
rMVF = realMVF(off, off, positions, [R,C]); 
rmotion = convert(rMVF); 
[rmodQ, rnum] = qModifier(Q, rmotion); 
rim = blurFreeImConst(rmodQ,rnum,dExpTime,std_v,convgain); 
figure,imagesc(rim),colormap(mygray),axis image; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate some figures of merit 
stdOneCap = std2(Q(:,:,2)-originalImage) 
stdBlurred = std2(Q(:,:,16)-originalImage) 
stdIm = std2(im - originalImage) 
stdrIm = std2(rim - originalImage) 

 
 

createChargeDistribution.m 
 

function [Q,convgain] = createChargeDistribution(R, C, N, scene, positions, 
support, dt, noiseflag, adcflag, std_v, poiss) 
 
% sensor description 
q       = 1.6*10^(-19); 
qe      = 0.25; 
epps1   = qe*poiss*100;  %q/sec  %total range epps1*(0 to 255) 
sensorQ = zeros(R,C,N+1); 
 
 
% go through all timesteps 
for tp = 1:N 
           
    % calculate the position of the scene on the imager 
    pos = support - positions(tp,:) ; 
     
    % calculate photon number given to a sensor pixel in a timestep   
    epps = epps1*scene(pos(1):pos(1)+R-1, pos(2):pos(2)+C-1);  %electrons per 
pixel and per second 
    epp  = epps*dt;                                            %electrons per 
pixel 
    
    Mp = 10^12; eppn = reshape(Mp*imnoise(epp/Mp, 'poisson'), R, C);  
    if noiseflag == 0  
        eppn = epp; 
    end 
    sensorQ(:,:,tp+1) = sensorQ(:,:,tp) + eppn; 
     
    % pixelwise and timestepwise add poisson noise  
    %for r = 1:R 
    %    for c = 1:C           



    %        sensorQ(r,c,tp+1) = sensorQ(r,c,tp+1) + 
noiseflag*poissrnd(epp(r,c)); 
    %    end  
    %end 
    %Mp = 10^12; sensorQ(:,:,tp+1) = reshape(Mp*imnoise(noiseflag*epp/Mp, 
'poisson'), R, C);  
     
     
end 
sensorQp = sensorQ; 
 
 
 
% => add poisson noise for frames independently 
%Mp = 10^12; sensorQp = reshape(Mp*imnoise( sensorQ/Mp,'poisson'), R, C, N+1);  
 
% => readout happens now  
sensorQpr = sensorQp + noiseflag*std_v*randn(R,C,N+1); 
%sensorQpr = sensorQp; 
 
 
% Use Correlated Double Sampling 
Q = sensorQpr - repmat(sensorQpr(:,:,1), [1 1 N+1]); 
    
% convert from electron units to charge units 
Q = Q*q; 
convgain = 255/max(Q(:)); 
 
if adcflag == 0 
    Q = (255*Q/max(Q(:))); % don't quantize Q (ADC) 
else 
    Q = floor(255*Q/max(Q(:))); % quantize Q (ADC) 
end 

 
calculateDifferentialImages.m 

 
function dQ = calculateDifferentialImages(Q); 
         
    sizeQ = size(Q); N = sizeQ(3); 
    dQ    = zeros(sizeQ(1), sizeQ(2), N-1); 
     
    for tp = N:-1:3 
        dQ(:,:,tp-1) = Q(:,:,tp) - Q(:,:,tp-1); 
    end 
         
    dQ(:,:,1) = Q(:,:,2); 
     
 

createPositionsLin.m 
 

function positions = createPositionsLin(TimeSteps, TotalShift)   
step       = ((TimeSteps)/TotalShift)^-1; 
positions2 = round([0:step:TotalShift; 0:step:TotalShift]'); 
positions  = positions2(1:TimeSteps, 1:2); 
 

calculateMVFpix.m 
 

function MVF = calculateMVFpix(dQ, hbs, sr, lambda) 
 
gridloc = zeros(1,1); 



size_dQ = size(dQ); N = size_dQ(3); 
MVF     = zeros(size_dQ(1), size_dQ(2), N-1, 2); 
 
 
for tp = 2:N 
 
 
    current  = dQ(:,:,tp); 
    next     = dQ(:,:,tp-1); 
    C        = double(current); 
    NX       = double(next); 
 
    % Determine the motion vector field (MVF) for one timestep 
    marg = hbs+sr; 
 
    % Go through all pixels 
    for r = marg+1:size_dQ(1)-marg; 
        for c = marg+1:size_dQ(2)-marg; 
         
            loc = [r, c]; 
         
            % Cut a block from Current 
            Cblock  = C( loc(1)-hbs:loc(1)+hbs, loc(2)-hbs:loc(2)+hbs ); 

 
            % Find a corresponding block in the Previous Frame and the 
Translation-vector     
            V = FindV(Cblock, loc, NX, sr, lambda); 
        
            % Save this vector in MVF   
            MVF(r, c, tp-1, :) = V;  
         
        end 
    end 
 
 
end 
 

findV.m 
 

function V = FindV(Cblock, gridloc, NX, sr, lamda); 
% This function finds a matching block in the next frame NX  
% to the block Cblock in its vicinity -sr/+sr around its original 
% location 'gridloc' 
% The output is 'bestV' the corrsponding translation 
 
bs = size(Cblock); hbs = (bs(1)-1)/2; 
 
bestV   = [0,0];  
bestSSD = inf; 
 
% Search for the translation 'bestV' of the block Cblock witch yields 
% the lowest SSD. 
SSD = zeros(2*sr+1,2*sr+1); 
 
for r = -sr:sr 
    for c = -sr:sr 
         
        % Get a block from P cut at the location gridloc + [r,c]  
        loc     = gridloc + [r c]; 
        NXblock = NX(loc(1)-hbs:loc(1)+hbs, loc(2)-hbs:loc(2)+hbs); 
         
        % Calc figure of merit SSD 



        SSD(r+sr+1,c+sr+1) = sum(sum( abs(Cblock - NXblock).^2 )) + lamda*(r^2 
+ c^2); 
        %lamda+mat =  
         
        % Calc figure of merit SSD 
        %currentSSD = sum(sum(abs(Cblock - NXblock))); 
        % Store global minimum 
        %if currentSSD < bestSSD 
        %    bestSSD = currentSSD; 
        %    bestV = [r,c]; 
        %end 
         
    end  
end 
 
%NXblockC = NX(gridloc(1)-hbs-1:gridloc(1)+hbs+1, gridloc(2)-hbs-
1:gridloc(2)+hbs+1); 
%Cblock, NXblockC, 
%SSD 
 
% Search for the Vector 
% How? Which one is the right one if there are several which yield the same 
global minimum? 
% 1) go circular 
 
point = []; 
[sizex sizey] = size(SSD); midx = (sizex-1)/2+1; midy = (sizey-1)/2+1; 
%midx = hbs+1; midy = hbs+1; 
 
[indexx indexy] = find(SSD == min(SSD(:))); 
index = [indexx indexy]; normindex = index - midx*ones(size(index)); 
 
dist = []; 
%[sizeindx sizeindy] = size(indexx); 
for s = 1:size(indexx) 
    dist(s) = sqrt(normindex(s,1)^2 + normindex(s,2)^2); 
end 
 
bestindrow = find(dist == min(dist(:))); 
point = index(bestindrow(1),:); 
 
V = -(point-[midx, midy]);         
         

convert.m 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% function motion = convert(vectors,flag) 
% 
% This function converts the motion vector fields provided by the motion 
estimation 
% algorithm to motion trajectory matrices as required by the "qModifier" 
function 
% 
% inputs  : vectors : The motion vector field (4 dimensional, vectors(i,j,t,:)) 
is 
%                     the motion vector at point in the scene i,j at time t        
%         : flag    : flsg(i,j) tells which frame is the last reliable frame  
%                     for point (i,j) in the scene 
% outputs : motion  : The motion trajectory matrices for each pixel 
%                     motion{i,j} is a matrix that describes the motion of a 
point  



%                     in the scene  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
 
function motion = convert(vectors); 
 
[m n T dummy] = size(vectors); 
 
for i = 1:m 
    for j = 1:n 
        motion{i,j}=[i j 1]; 
        for time = 1:T 
            cur_point = motion{i,j}(end,1:2); 
            v = vectors(cur_point(1),cur_point(2),time,:); 
            v=reshape(v,1,2); 
            if (v(1)~=0)|(v(2)~=0) 
                %cur_point = motion{i,j}(end,1:2); 
                nextpoint = cur_point+v; 
                nextrow = [nextpoint(1),nextpoint(2),time+2]; 
                motion{i,j} = [motion{i,j};nextrow]; 
            end 
        end 
        lastrow = motion{i,j}(end,:); 
        if lastrow(3) ~= (T+2) 
            lastrow(3) = T+2; 
            motion{i,j}=[motion{i,j};lastrow]; 
        end 
    end 
end 
 
return; 

qModifier.m 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% function [Q,num] = qModifier(inQ,motion) 
% This function gets the camera charge as a function of pixel positions and  
% frame numbers, and the trajectory of each point in the scene on pixel plane 
% as input. It generates the averaged charge values of each pixel as a function 
% of time as described in the project update report. It also outputs how many  
% values were averaged per pixel during the process 
% 
% Inputs: inQ       : The charge collected at each pixel as a fn of no of 
frames 
%         motion    : The motion trajectory (cell array) last row of each 
pixel's  
%                     trajectory tells where to stop for that pixel 
% Outputs: Q        : The averaged pixel charge values (zero padded to non-
valid  
%                     charge values 
%          num      : The number of averaged values per pixel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
function [Q,num] = qModifier(inQ,motion) 
 
[m n T] = size(inQ); 
Q = zeros(m,n,T); 
num = zeros(m,n,T); 
for i = 1:m 
    for j=1:n 
        traj = motion{i,j}; 



        initPoint = traj(1,1:2); 
        [noPoints,dummy] = size(traj); 
        noPoints = noPoints - 1; 
         
        if noPoints<=0 
            error('The motion trajectory is defined falsely - the number of 
rows in each cell has to be at least 2'); 
        end 
         
        frames = traj(:,3); 
         
        for k = 1:noPoints 
            %k,pause; 
            point = traj(k,1:2); 
            frameStart = frames(k)+1; 
            frameEnd =frames(k+1)-1; 
            if k == noPoints 
                frameEnd = frameEnd+1; 
            end 
            pointx = point(1); 
            pointy = point(2); 
                        
            originCharge = inQ(pointx,pointy,frameStart-1); 
            QCoorx = initPoint(1); 
            QCoory = initPoint(2); 
             
            for frame = frameStart:frameEnd 
                QCoort = frame-frameStart+2; 
                inQCoorx = point(1); 
                inQCoory = point(2); 
                inQCoort = frame; 
                
Q(QCoorx,QCoory,QCoort)=Q(QCoorx,QCoory,QCoort)+inQ(inQCoorx,inQCoory,inQCoort)
-originCharge; 
                num(QCoorx,QCoory,QCoort)=num(QCoorx,QCoory,QCoort)+1; 
            end 
            %Q10= squeeze(Q(10,10,:))' 
            %n10=squeeze(num(10,10,:))' 
        end 
        thisNum = squeeze(num(QCoorx,QCoory,:)); 
        nonzeroInd = find(thisNum~=0); 
        Q(QCoorx,QCoory,nonzeroInd) = 
Q(QCoorx,QCoory,nonzeroInd)./num(QCoorx,QCoory,nonzeroInd); 
    end 
end 
 
return; 

blurFreeImConst.m 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% function im = blurFreeImConst(modQ,num,singleExpTime,sigma_v,sensorGain) 
% 
% This function gets the modified (averaged) Q values across pixel positions 
and  
% time and consructs the estimated photo-current matrix for each pixel. Then 
% calculates the final HDR image using estimated photocurrent. 
% 
% Inputs: modQ      : The averaged Q values (in DV's)(generated by 
"qModifier.m") 
%         num       : The number of averaged values per pixel.  
%         singleExpTime: Exposure time for a single exposure 



%         sigma_v   : Read noise std dev. in e- 
%         sensorGain: Gain of the sensor in DV/e; 
% Outputs: im       : The final motion blur free low noise high DR image 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
function im = blurFreeImConst(modQ,num,singleExpTime,sigma_v,sensorGain) 
 
[m n T] = size(modQ); 
modQ = modQ/sensorGain; % convert DV's to e-'s 
 
for i = 1:m 
    for j=1:n 
        qPix = squeeze(modQ(i,j,:)); 
        nPix = squeeze(num(i,j,:)); 
        qPix = qPix(2:end); % The first value is zero, for reset value, after 
CDS 
        nPix = nPix(2:end); % Get rid of the reset charge and num for that 
 
        % Check the modQ and num entrees were constructed right. 
 
        zeroIndQ = find(qPix == 0); 
        zeroIndn = find(nPix == 0); 
         
%        if ~(zeroIndQ == zeroIndn) 
%            error(strcat('The zero entrees in Q and num for 
pixel',int2str(i),',',int2str(j),'do not match')); 
%        end 
        if (~(isempty(zeroIndQ))) & (~(isempty(zeroIndn))) 
            temp1 = diff(zeroIndQ); 
            temp2 = diff(zeroIndn); 
            if (~(isempty(find(temp1>1)))) |  (~(isempty(find(temp2>1)))) 
           %     error(strcat('The zero entrees in Q and num for 
pixel',int2str(i),',',int2str(j),'are not proper')); 
            end 
        end 
         
         
        nPix = nPix(find(nPix ~= 0)); % The non-zero entrees of nPix are only 
meaningful 
        qPix = qPix(find(nPix ~= 0)); 
         
        % Calculate the coefficients for estimator and estimate of the 
photocurrent 
        % As the estimate for the photocurrent is recursive, each step we 
estimate  
        % a value for the photocurrent and use its estimate as an estimate for 
the  
        % shot noise for the next step 
  
        s = length(nPix); 
         
        time = singleExpTime*(1:s); 
        I_tilda = qPix'./time; 
         
        b = []; 
        g = []; 
        h = []; 
        I_hat = []; 
        b(1) = 1; 
        g(1) = 1; 
        h(1) = 1; 
        I_hat(1) = I_tilda(1); 



        for k = 2:s 
            sigma_uSq = I_hat(k-1)*singleExpTime; 
            divisor = (1:k-1).*sqrt(nPix(1:k-1))'; 
            b(k) = k*nPix(k)/nPix(1)+k/(k-1)*nPix(k)/nPix(k-1)*b(k-1)+... 
                k*nPix(k)*sigma_uSq/2/(sigma_v^2)*sum(b(1:k-1)./divisor); 
            g(k) = sum(b(1:k)); 
            h(k) = b(k)/g(k); 
            I_hat(k) = I_hat(k-1)+h(k)*(I_tilda(k)-I_hat(k-1)); 
        end 
        % Form the final photocurrent estimate matrix 
        I(i,j) = I_hat(s); 
    end 
end 
 
% Now the final HDR image can be constructed; 
 
im = (T-1)*singleExpTime*I*sensorGain; 
im(find(im<0)) = 0; 
return; 

realMVF.m 
 

% Function that gives the real motion vectors 
 
function MVF = realMVF(offsetx,offsety,positions,sizeImager); 
% offsetx,offsety = offset of the patch in the camera 
% positions = position shifts of the camera 
[N dum] = size(positions); 
MVF = zeros(sizeImager(1),sizeImager(2),N-2,2); 
pos = [0 0]; 
for t = 1:N-1 % The MVF will be N-1 sized  
    mvf =positions(t+1,:)-positions(t,:); 
    pos = pos+mvf; 
    for i=offsetx+pos(1):sizeImager(1)-offsetx+pos(1) 
        for j = offsety+pos(2):sizeImager(2)-offsety+pos(2) 
            MVF(i,j,t,:) = mvf; 
        end 
    end 
end 
return 
 

 
makePatternREC,m 

 
function pat = makePatternREC; 
 
pat   = zeros(10,256); 
for k = 1:100 
    pat(k,:) = round((128 + 127*sin(2*pi*k^1.5/20*[1:256]/256))/255)*255;  
end 

makePatternSMOOTH.m 
 
function pat = makePatternSMOOTH; 
 
pat   = zeros(10,256); 
for k = 1:100 
    pat(k,:) = 128 + 127*sin(2*pi*k^1.5/20*[1:256]/256);  
end 
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