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Abstract

Video compression has been an active research area in the last decade. Amongst many
proposed methods, motion compensated coding has taken the most attention and taken its
place in many standards (Mpeg, H.26L, etc…) The main difference between motion
compensated coding and image based coding schemes such as DCT is that motion
compensated coding exploits temporal redundancies between consecutive frames, i.e.,
between two frames. In this paper, we investigate 3D methods that exploit the temporal
redundancies on more than two frames. We first describe and evaluate transform based
methods such as 3D DCT, and PCA. Next, we propose a new method called volume based
motion compensated coding. Volume based motion compensated coding is an extension
of regular motion compensated coding and works on stacks of images as opposed to
images. Our results indicate that, 3D methods can provide better results than motion
compensated coding in many of the video sequences.

1. Introduction

Motion compensated coding has been the most widely used video compression method
amongst other compression schemes. The main difference of motion compensated coding
from other transform and prediction based methods is its utilization of the motion
characteristics in the images. While most other compression algorithms achieve
compression by exploiting the redundancies only in spatial dimensions (in images),
motion compensated coding exploits redundancies between two consecutive frames as
well. In turn, motion compensated coding provides more efficient compression.

In this paper, we consider the video as a 3D signal and investigate ways of exploiting
redundancies on more than two consecutive frames. Figure 1 gives an illustration of the
redundancies on the temporal domain. Figure 1a gives a frame from the salesman
sequence. Figure 1b and 1c shows the variation of row 80 and column 100 respectively
over time. We can easily see that the variation of the 3D video signal is much less in the
temporal dimension than the spatial dimensions. It is possible to achieve better
compression by exploiting the redundancies in the temporal domain.

(a) (b) (c)
Figure 1. (a) An image from the salesman sequence. (b) Variation of a row over time. (c) Variation of the
column over time.
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For this purpose, we looked into various 3D methods. Among these are 3-D DCT, PCA
and wavelet transformation. 3-D based methods work better than motion compensated
coding especially when there is a smooth signal where most of the signal is concentrated
in low frequencies. Next, we propose a new method called volume based motion
compensated coding. This method is similar to regular motion compensated coding
except that it works on stacks of images in stead of images directly.

The paper continues as follows: Section 2 describes previous work on 3D compression
methods. Section III describes the 3D compression methods including our proposed
method. Section IV describes our experiments with many sequences. Finally, Section V
gives our conclusions and discusses possible future work.

2. Previous Work

3D transform based compression has been applied by some researchers. The 3D DCT
has been proposed for both image [1,2] and video compression. Authors have argued that
3D DCT can be effective in compressing video sequences, especially those with little or
no motion [3,4,5].

3D Wavelet transforms have also been investigated as a method for video
compression [6-14]. Authors have shown that 3D wavelet transforms, using no motion
compensation, provide better compression performance than current block-based motion
compensated predictive methods. 3D wavelet decomposition has been combined with
EZW [15] or SPHIT [16] coding to achieve good quality compression. A significant
advantage of 3D wavelet transforms or 3D subband coding over other tranform methods
is that the resulting encoded video is highly scalable, both in the spatial and temporal
domains. The scalability and multiresolution properties of wavelet transforms have been
utilized in previous work in designing scalable video codecs.

Although they have not yet been applied to video, vector quantization and
principal component analysis (PCA) have been proposed in [17,18,19] for compression
of images. In [18], PCA has been proposed as a better image processing approach
compared to DCT since it exploits the intensity characteristics of data better.

In this paper, we would like to combine the results of previous 3D based methods
and combine one of them, i.e. DCT, by a 3-D version of motion compensated coding.
This way, not only do we exploit the motion characteristics better, but we also take
advantage of the effectiveness of the 3-D methods.

3. Methods

In this section we describe the 3D compression methods we tried. 3D DCT is explained
in Section 3.1. We explain how principal component analysis can be used for 3D data
encoding in Section 3.2. We explain the wavelet transformation in Section 3.3. Finally,
we describe our proposed method, i.e., volume-based motion compensated coding in
Section 3.4.

3.1. 3D Discrete Cosine Transformation
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The Discrete Cosine Transform (DCT) is a real-valued, separable orthonormal transform
whose basis vectors are composed of samples of cosine functions. The 3D DCT analysis
is defined as follows:

Let X be a 3D signal of size M by N by T. Let Y be the 3D DCT of X, also of size
M by N by T. The elements of Y can be calculated as
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Since the DCT is separable, this 3D transform is the same as finding the 1 dimensional
DCT along each of the three dimensions of X.

The encoder block diagram of the 3D DCT compression algorithm is in Figure 2. The
steps are summarized below.

1. Construct volumetric images by combining N frames into a stack. Here N is the
depth of the constructed stack.

2. On each volumetric image:
a. Divide each volumetric image into NxNxN volumetric blocks. (N is 8 in

our experiments.)
b. For each volume block, calculate the 3D DCT and quantize the

coefficients.

Figure 2. Block diagram for the encoder of the 3D DCT method.

When the 3D-DCT is applied to video, the transformation is also applied to the time
dimension. It is therefore expected that the 3D-DCT will be more efficient than frame
based 2D-DCT when there is correlation between frames.

3.2. 3D Principal Component Analysis

Principal Component Analysis, or singular value decomposition, is a way to make a low-
rank estimation of data where the residual is minimized in the least squares manner. In
this section, we describe the application of principal component analysis to representation
of 3D intensity data (video). First, we have a training stage where the principal
components are determined. The principal components are determined before the video is
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coded and sent to the decoder side. Once the principal components are determined, the
3D images are constructed in terms of them. This works as a low-rank prediction for the
video signal as shown in the block diagram in Figure 3. The residual between the
prediction and real video data is coded by a 3D DCT, and the quantized PCA and DCT
coefficients are sent to the decoder.

Figure 3. Block diagram of the encoder for the PCA method.

Similar to DCT, PCA works on stacks of images. Stacks of depth n are first divided into
blocks of size nxnxn. ( n is 8 in our experiments) As demonstrated on Figure 4., each of
nxnxn block intensity values are listed into an nxnxn vector, called block vector. Each
block vector is then listed into the block matrix B. This matrix is first normalized by

subtracting the average block vector form every column and the normalized
~

B is

constructed. Finally a singular value decomposition is performed on
~

B . The left singular

vectors of
~

B represent the orthogonal directions in nxnxn dimensional space where main
intensity variations inside the blocks occur. We will refer to these directions as the
principal components, Pi.

Figure 4. Illustration of the application of PCA on the 3D Data
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Once the principal components are determined, each block is represented as a linear
combination of the principal components:
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where X is a block vector,
^

X is a prediction for X, αi is the PCA coefficient, <> is the
inner vector product operation, and k the total number of used principal components. In
our experiments the value of k was varied between 4-10. The PCA coefficients αi are

quantized and encoded. The residual between
^

X and X is coded by 3D DCT. The DCT
coefficients are quantized and encoded as well. In our experiments, we give the
theoretical entropy values for the quantized coefficients.

3.3. 3D Discrete Wavelet Transformation
The Discrete Wavelet Transform (DWT) is a separable, dyadic tree-structured subband
transform. The subband decomposition is performed by recursively passing the signal
into a two-filter channel bank, where the successive decompositions are only done on the
lowest subband. Since the 3D DWT is separable, a single step in the decomposition is
composed of passing each dimension through the filter bank producing eight subbands
per level. The block diagram of a single level 3D DWT is shown in Figure 5.

Figure 5. Block diagram of a single level decomposition for the 3D DWT
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Like the 3D DCT and 3D PCA, the 3D DWT is applied to video by first dividing
the sequence into stacks of N frames. Each stack is then divided into NxNxN volume
blocks. The difference of this method from the previous two is that N must be a large
number in order to take advantage of the multilevel decomposition. DWT recursions are
then applied to each NxNxN volume block. Finally, for efficient compression of the
wavelet coefficients, the EZW or the SPIHT algorithm can be applied. A block diagram
of the proposed DWT encoding of video is shown in Figure 6.

Figure 6. Block diagram of the encoder of the 3D DWT method

3.4. Volume Based Motion Compensated Coding

In order to exploit temporal redundancies more, we extended the motion compensated
coding algorithm to 3D. Volume based motion compensated coding (3D Motion
Compensated Coding (3D MC)) is quite similar to motion compensated coding, except
that it works on stacks of images, as opposed to images in regular motion compensated
coding.

The block diagram of the algorithm is given in Figure 7. The steps of the algorithm can
be summarized as follows:

1. Construct volumetric images by combining each m image into a stack. Here m is
the depth of the constructed stack.

2. On each volumetric image:
a. Divide each volumetric image into NxNxM volumetric blocks. (N is 8 in

our experiments. M is varied between 4 and 8)
b. For each block of the image, find an NxNxM volumetric block in the

previous (encoded) images that best resembles the current image. This
prediction block is coded by a 3D motion vector. A prediction volumetric
image is coded in this manner.

c. The difference between the actual volumetric block and the prediction
volumetric block is the error block. The error block is coded by 3D DCT.
The coefficients of the DCT matrices are quantized with different methods
and ways for various compression results.

Observe that, when M=1, the volume based motion compensated coding is exactly the
same as regular motion compensated coding. In our implementation, we used full search
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to find the 3D motion vectors. We used two different measurement criterion: The first is
the regular mean absolute difference distortion measure. The second is the standard
deviation of the difference (residual) volumetric block. The latter is intended to obtain
residual blocks with uniform distributions. The 3D DCT would then code the residual
very efficiently. We observed in our experiments that the standard deviation measure
always gave better results.

Figure 7. Block diagram of the volume based motion compensated coding.

3D methods usually would not work when there is non-uniform motion. Volume based
motion compensated coding exposes even further constraints on the object motions in
order to work well. Here are some of the cases that the volume based algorithm would
not work:

1. When the motion is not smooth. This occurs when there is acceleration embedded
in the motion. This problem would not occur in the regular motion compensated
coding since each image is coded separately there.

2. Cases where motion compensated coding would not work. Among these are:
a. The motion inside the block is not same for each pixel (voxel).
b. Occlusion. This could potentially be dealt better by searching over several

previous images. That is, the features could be occluded in the previous
image I(t-1) but could be appearing in previous frames. The trade-off in
searching over several previous images is the increased complexity.

c. Sudden illumination changes

There are two main advantages of volume based motion compensated coding over regular
motion compensated coding. First, more data is represented by the same number of
motion vectors. This inherently provides a way for more efficient compression especially
when there is no or little motion. Second, the residual of the volume based motion
compensated coding is coded by a 3D DCT (as opposed to 2D DCT in motion
compensated coding). We have discussed in the previous sections that 3D DCT provides
better compression whenever there is correlation in the temporal domain (between
frames). The residual block of the volume based motion compensated coding often has
correlation in the temporal domain. Therefore, volume based motion compensated coding
combined by 3D DCT potentially provides better results than motion compensated
coding combined with 2D DCT.

Divide each 
stack into 

volume blocks 

Find 3D 
Motion 
Vectors  

For each NxNxM volume block… 

Calculate 
residual 

3D DCT on 
residual Q



Salih Burak Gokturk Anne Margot F. Aaron

In the current implementation, we use full search to find the best match for the motion
vectors. We tried two different measurement criterions. The first is the mean absolute
difference. The second is the standard deviation of the residual image. The main
motivation behind the latter is that a uniformly distributed residual image is coded more
efficiently by 3D DCT. In our experiments, we observed that the standard deviation
measure usually gave better results compared to mean squared error.

We conducted synthetic experiments to demonstrate how the program works. In
the first experiment, we had a rectangular box moving with constant velocity as shown in
Figure 8(a). Since the motion was smooth, the video was perfectly reconstructed. In the
second synthetic experiment, we added a non-moving rectangle to give an effect of
occlusion. The initial frame is shown in Figure 8(b). Figure 9 shows one of the frames
where we see the effect of occlusion. Figure 9(a) and (b) are the previous image and the
current images respectively. Figure 10(a) shows the resulting predicted image by the
regular motion compensated coding by looking only the previous image as the search
region. Figure 10(b) is the resulting image with volume based motion compensated
coding where we searched over several previous frames. We observed that volume based
motion compensated coding dealt well with occlusion. Of course, regular motion
compensation would also deal with occlusion when we search in more than one previous
images. In our experiments, we will not look at previous images due to time complexity
reasons.

Volume based motion compensated coding matches volumetric blocks from the current
stack of images with volumetric blocks from previous stack of images. In a such block
match, we observe that the inner voxels of the blocks are usually matched better
compared to the outlier voxels. We call this effect the ‘Centroid Effect’. Therefore, when
we look at the constructed movies, we will see a pattern of good quality frames followed
by worse quality frames. Figure 11 demonstrate four consecutive frames of a movie
constructed by volume based coding. We can easily observe that the middle two frames
have a better quality compared to the frames at the beginning and end. Although we
currently do not handle the centroid effect, there could be methods for exploiting the
centroid structure of the prediction, and should take its place in the future work.

In order to compare the predictions of motion compensated coding and volume based
motion compensated coding, we coded the Miss. Am. sequence with both motion
compensated coding and volume based motion compensated coding. The movements in
this video are not very smooth, and we observed many artifacts in the resulting coded
images. Figure 12(a) and 12(b) show the same encoded frame with regular motion
compensated coding and volume based motion compensated coding (using 8x8x4 volume
block size, and 0 search depth in time) respectively. Obviously, The regular motion
compensated coding gives better prediction on each frame. The gain of volume based
coding might come when the difference volume blocks are coded with 3-D DCT.
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(a) (b)
Figure 8. Initial Frame of the (a) synthetic video with synthetic motion (b) synthetic video with occlusion

(a) (b)
Figure 9. Example of an occlusion. (a) Previous Image. (b) Current (to-be-coded) image.

(a) (b)
Figure 10. The resulting encoded images for the image of Figure 5.b coded by (a) motion compensated
coding. (b) Volume based motion compensated coding.
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(a) (b) (c) (d)
Figure 11. Illustration of the centroid effect in volume based motion compensated coding. The central
frames have a better prediction than the edge frames.

(a) (b)
Figure 12. An example image from the Miss.Am. sequence. (a) encoded coded by regular motion
compensated coding (b) volume based motion compensated coding.

4. Experiments and Discussion

We performed experiments on the 3D DCT, 3D PCA and 3D MC methods. We
compared these 3D algorithms to two 2D methods, namely, 2D DCT and 2D MC. For
2D DCT, each frame is coded independently by dividing the frame into square blocks and
applying the 2D DCT on each block so no temporal redundancy is exploited at all. For
the 2D MC, we applied the standard motion compensated predictive coding, with full
search on a window of the previous frame and 2D DCT on the residual. The Matlab code
for the experiments can be seen in Appendix B. Although we did not experiment with
the 3D DWT we include our initial code of the 3D DWT implementation in this
appendix.

To compare the algorithms we plotted the Bit Rate versus PSNR curves. For each data
point in the plot, the bit rate was derived by quantizing the coefficients using a uniform
quantizer and finding the entropy of the resulting coefficient symbols and motion vectors
(if present). The quantized video sequence was then compared to the original and the
PSNR was computed. PSNR was calculated over the same support region for all the
experiments.
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In Section 4.1, 4.2, 4.3 and 4.4 we discuss in detail the experimental results when the
algorithms are applied to the Miss America, Salesman, Foreman and Bus Sequences,
respectively. Section 4.5 contains Bit Rate versus PSNR plots for other sequences.

4.1. Miss America Sequence

The Miss America sequence is a low motion sequence with the motion confined to the
person’s lips and head. Since motion is low, temporal redundancy is high and it is
expected that the 3D compression methods outperform the 2D methods for this sequence.
Our experimental results, shown in Figure 13, verify this.

As it can be seen from the plot, the two 3D transforms – 3D PCA and 3D DCT – give the
best PSNR for a given bit rate, with PCA slightly better than DCT. The 3D MC is also
better than the 2D MC for bit rates lower than 0.55 bit per pixel. Specifically, at a bit rate
of 0.14 bit per pixel, 3D MC is about 2 dB better in terms of PSNR compared to 2D MC.
The 2D DCT method performs very badly with a PSNR 8 dB lower than the 3D
transforms at 0.14 bit per pixel.

Figure 13. PSNR-Rate curve for the Miss Am sequence.

Figure 14 shows a comparison of a single frame from the compressed Miss America
sequences. As it can be observed from the frame, the 2D DCT gives a very blocky and
blurred sequences. For the 2D-MC compression, the distortion is manifested in rapidly
varying noise which can be very striking to the viewer. For the 3D DCT and 3D PCA
methods we observed less noise and smoother pictures. Although distortion is still
observed, it does not vary rapidly from frame to frame so the noise is less evident. The
absence of rapidly varying noise can be attributed to the fact that the same coefficients
represent a stack of frames so the transition between those frames is smoother. Because
of the centroid effect, the 3D MC sequence has a mixture of noisy frames and smooth
frames.
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(a) (b) (c)

(d) (e)
Figure 16. A reconstructed frame of Miss Americaq at 0.14 bit/pixel by

(a) 2D DCT, (b) 2D MC, (c) 3D MC, (d) 3D DCT and (e) 3D PCA

4.2. Salesman Sequence

Salesman sequence seems to involve more motion compared to the Miss America
sequence, yet the motion takes place only in a very concentrated area. Due to the little
amount of motion taking place on the overall image, we observed that 3D based methods
get better results compared to motion compensated coding.

Figure 15 shows the PSNR-Rate curve for the salesman sequence among many methods.
First of all, we observe that all of the methods outperform the 2D image based DCT
coding scheme. The other methods seem to perform similar to each other except for the
low bit range. We observe that volume based motion compensated coding performs better
than 3D DCT and motion compensated coding at bit rates lower than 0.25 bits/pixel.
More specifically, around 0.11 bits/pixel rate, the PSNR of volume based motion
compensated coding is 1(1.5) dB more than motion compensated coding (3D DCT).

Figure 15. PSNR-Rate curve for the salesman sequence.
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Figure 16(a) and (b) gives a frame constructed at 0.11 bits/pixel by volume based motion
compensated coding and motion compensated coding respectively. We observe that
volume based motion compensated coding provides a less noisy image in this case.
Similarly, Figure 17(a) and (b) provide a frame from the reconstructed videos of volume
based motion compensated coding and 3D DCT respectively. Here, we observe different
artifacts, i.e., very blurred image in the 3D DCT versus noisier image in volume based
motion compensated coding. Since the artifacts are different in this case, it is subjective
to choose between the two methods.

(a) (b)
Figure 16. A reconstructed frame at 0.11 bits/pixel by (a) volume based motion compensated
coding (b) motion compensated coding.

(a) (b)
Figure 17. A reconstructed frame at 0.14 bits/pixel by (a) volume based motion compensated
coding (b) 3D DCT.

4.3. Foreman Sequence

The Foreman sequence contains more motion than the previous sequences. In this
sequence, non-uniform motion is caused by the camera as well as the man’s face and
head movement.

The Bit Rate versus PSNR curves below (see Figure 18) show that the 3D DCT
performs the best among the methods. Even if there is a large amount of motion, the
wide planar surfaces (the foreman’s hat and the background building), still provide for a
lot of temporal redundancy at a given spatial location. It can also be observed that the
PCA comparative performance deteriorates as we go to lower bit rates. One reason for
this is that the video is roughly divided into half smooth temporal signal and half high
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frequency temporal signals. So at lower bit rates, it is harder to represent both types
accurately using a small number of principal components. Furthermore, since the motion
is non-uniform from frame to frame, the 3D-MC method is less appropriate and the
motion is better captured by the 2D-MC technique. Figure 19 gives a comparison of a
single frame from the foreman sequence compressed using the difference methods.

Figure 18. PSNR-Rate curve for the foreman sequence.

Based on the plots, we can see that at 0.56 bit per pixel, the 3D-DCT method
perform 1 dB better than 2D-MC while 3D-MC performs 2.5 DB worse than 2D-MC.

(a) (b) (c)
Figure 19. A reconstructed frame of Foreman at 0.56 bit/pixel by (a) 2D MC, (b) 3D MC, (c) 3D DCT

4.4. Bus Sequence

The bus sequence has a lot of motion going on in the scene. Since the video was captured
by a hand-held camera, there was also a lot of motion even in the non-moving parts of the
scene. Due to the movements of the camera, there was a global motion in the video,
which was captured well with regular motion compensated coding. This global motion,
however, is very non-uniform over consecutive sets of frames, and as a result each
volumetric block of volume based motion compensated coding involved objects moving
with instantly changing accelerations, which is a big drawback for volume based motion
compensated coding. Similarly, the correlation between consecutive frames of an 8x8x8
DCT block was nearly 0. As a result, 3D DCT does not perform any better than 2D DCT.
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Figure 20 gives the PSNR-rate curve for the bus sequence. As expected, regular motion
compensated coding provides the best results amongst all of the methods.

Figure 20. PSNR-Rate curve for the bus sequence.

In order to illustrate why 3D methods do not work that well, we would like to show 4
consecutive frames from the bus sequence. In Figure 21(a) – (d), we give the four frames
on the left, and a zoomed region from these sequences. Observe that, the zoomed region
constantly changes in these four frames. This is exactly what is happening everywhere
throughout the sequence due to the non-uniform global motion embedded in the
sequence. Due to this high frequency behavior in the temporal domain, the 3D methods
failed in this case.
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(a)

(b)

(c)

(d)
Figure 21. Illustration of high frequency characteristics in the temporal domain of the bus sequence.
Observe how the zoomed window in the right various across consecutive frames.
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4.5. Other Sequences

In this Section we provide the PSNR-Rate curves for the other sequences that we
experimented with. Figure 22-24 show the results for Claire, mother daughter, and car
phone respectively. In general, we observe that either of 3D DCT or volume based
motion compensated coding provided better results in terms of PSNR versus Rate.

Figure 22. PSNR-Rate curve for the Claire sequence.

Figure 23. PSNR-Rate curve for the car-phone sequence.
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Figure 24. PSNR-Rate curve for the Mother-Daughter sequence.

5. Conclusions and Future Work

The video signal has high temporal redundancies between a number of frames and this
redundancy has not been exploited enough by current video compression techniques. In
this research, we showed that 3D methods, such as 3D DCT, 3D PCA and 3D MC, which
make use of the temporal redundancy between several frames, can perform better than
standard 2D MC especially for low motion sequences. Although 3D methods require
more memory for frame storage and possibly more complex processing, continuous
advancements in processing and storage technology will overcome this disadvantage.
With the apparent gains in compression efficiency we foresee that 3D methods will be the
future of video compression.

There are various directions for future investigations. First of all, we would like to
explore methods that would exploit the centroid effect that is observed in volume based
motion compensated coding. Currently we use 3D DCT for coding the residual, and 3D
DCT does not exploit the centroid structure at all. Another direction could be to combine
volume based motion compensation with other 3D transformations such as wavelet
transformation. Another extension could be to use only the temporal domain
redundancies, i.e. by a run length coding of each pixel or collection of pixels along time.
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APPENDIX A - Division of Work

Algorithms
The algorithms were designed through discussions of both members of the group.

Implementation
2D and 3D Block Matching and Motion Compensation – Burak
3D DCT – Anne
3D PCA – Burak
Quantization and Entropy Calculations of 2D and 3D DCT Coefficients – Anne
Quantization and Entropy Calculations of PCA Coefficients – Burak
Entropy Calculations of Motion Vectors – Burak
PSNR Calculations – Anne
Synthetic Experiments – Burak
Main scripts – Anne and Burak
Initial 3D DWT Code – Anne
Movie Creation script for the presentation - Burak

Experiments
Both members of the group repeated all the experiments on at least five different
sequences.

Report
Abstract - Burak
Introduction – Burak
Previous Work – Burak and Anne
3D DCT – Anne
3D DWT – Anne
3D PCA – Burak
3D MC – Burak
Experiments and Analysis

Experiment Set-up – Anne
Miss America – Anne
Salesman – Burak
Foreman – Anne
Bus – Burak
Other Sequences – Burak

Conclusions and Future Work – Burak and Anne

APPENDIX B – Matlab Code

Please refer to attached source files in source.zip.


