
OBJECT-TRACKING
USING MULTIPLE CONSTRAINTS

 ISMAIL ONER SEBE

EE392J, DIGITAL VIDEO PROCESSING, WINTER 2002

Stanford University, EE Department

E-mail: iosebe@stanford.edu

ABSTRACT

Object-tracking is one of the most popular areas of video processing; most of the

methods so far are object-dependent and concentrates only on one constraint of the object.

In this report, I tried to combine multiple constraints for a faster and more robust tracking

algorithm. Dynamic use of multiple constraints is the ultimate goal of the project, for the

specific video sequences of basketball game.

INTRODUCTION

In the last decade object-tracking become very popular because of its applicability

to daily problems and ease of production, e.g. surveillance cameras, adaptive traffic lights

with object tracking, plane detection. The superiority of object-tracking to object

recognition became apparent after the development in the video processing and motion

estimation.

Although object-tracking using motion vectors is a very powerful method, it fails to

give a robust and reliable answer all the time. There are additional methods for motion

vectors in order to overcome some deficiencies of this method, such as regularization

using smoothness constraint, multipoint neighborhood, and pel-recursive methods [1].

The methods of object recognition most of the underestimated and not used but in this

report I try to combine these methods in order to use the power of both sides.

The report concentrates on the basketball sequences because the object recognition

part of the algorithm uses feature detection, which is specific to the sequence. The

50 100 150 200 250 300

50

100

150

200

obvious choices for constraints are color information and edges. This study basically tries

to combine color and edge constraints with the motion estimation criterion.

CONSTRAINTS

This project tries to combine the

color constraint and edge constraint with

motion vectors, so let’s look at these

methods separately and in detail, to see if

we can really use them to estimate the

position and size of the ball. Here is a

luminance of a sample frame from the

sequence.

 Figure 1

• Motion Vector Constraint

Block-matching algorithm is the most reliable and common motion vector

estimation algorithm of all (very subjectively stated). Although it’s the most common of

all, it has some robustness problems. The problems most arise in the presence of noise

and occlusions. As seen in the class, if the sequence has appreciable camera noise the

block-matching algorithm starts to give spurious motion vectors. This phenomenon

usually happens if the estimation is tried to be done in a smooth region.

If these spurious vectors are examined, it is easily can be seen that there is a strong

relation between the vectors and the mean squared error. When the region that’s

examined has very similar values in a region, in the presence of camera noise these

values change constantly. As you may see from Figure 1, the image quality is very low in

terms of noise. So the normal matching criterion MSE is not enough to estimate the

motion vectors.

A simple but effective choice of matching criterion is a second term that will

dominate in these situations and also will cease in the presence of motion. I propose to

use a distance panelizing term as the second criterion. The ultimate form is as follows:

S (x-x’)2+ ?dist

Formula 1

The result of the proposed matching criterion is as follows:

 Criterion=MSE Criterion = MSE+ ?dist

Figure 2

Motion vectors above are calculated using 16x16 window size with 32x32 pixel

search area fro the whole image. The experimental value of the lamda is found to be 20.

Actually it gives similar values for the range 10-50. If we look at this term it can be seen

that even for the farthest point it gives an error bias of 2 out of 255 for each pixel. So if

there is only noise this diminishes the noise but in the presence of the motion it is too

small. Simple threshold for the MSE is tried too, but this scaling seems to work better

empirically.

• Edge Constraint

Edge feature is one of the most popular object features in object recognition

because of its power to represent a non-transparent object effectively with fewer values.

Another reason is human eye is more sensitive to edges than the smooth areas. Because

of the above reasons edge constraint is attempted to be used as one of the constraint.

As mentioned before the image quality is low, but this time in terms of motion blur.

Because the ball is moving relatively fast the capture efficiency is very poor when the

ball is moving. See figure 1. So the edge feature of the ball is not easy to calculate.

Another problem is the images are not edge free. There are too many details around the

balls trajectory including bar at the bottom of ball and the one playing with the ball. But

these values can be eliminated by using absolute frame difference for edge detection. The

results of both methods are given as follows:

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

Quiver plot of the motion vectors

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

Quiver plot of the motion vectors

 Edge Detection to Current Frame Edge Detection to Difference Frame

Figure 3

Canny edge detection with threshold value of 0.1 is used. Edge detection applied to

only current frame suffers from the background detail and the player. The difference

frame suffers from doubling of the ball because of using frame difference. As a result,

edge constraint will not be used as one of the constraints in this project because of the

above problems it has.

• Color Constraint

The images that are captured by the camera are converted from Avi format to

YCrCb format. The power of this format is it has all the information that is needed and

we do not need to convert the data into other color spaces. The luminance value is used

for motion estimation and the all Y, Cr, and Cb is used for the color constraint. The color

space is divided into inliers and outliers. The threshold value is the found with an

algorithm that will be discussed in the following section. There band-pass are applied,

one for each color vector. The outputs are “anded” in order to get a binary segmented

image of the sequence. This part of the code is very fast because it only uses Matlab

matrix operations. The output image mostly has the values that are needed, ball is mostly

retrieved. But because the ball is smeared during capture, some of the pixels on the ball

are rejected. Actually the position of the ball can’t be determined by looking at the

images (it is really hard even for humans, refer figure 1).

A sample output of the color constraint looks like as follows:

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

Figure 4

As you may see the proposed scheme works pretty good. But unfortunately not all

the results are that good. Sometimes the ball is mostly rejected or the hand of the player

(color properties are close) is included in the ball too; which results in an offset in the

estimation of the balls position and radius.

GENERAL PROCEDURE

Direct implementation of the above constraints will not give us a robust and fast

algorithm. In this project, the constraints are used sequentially and the results of one

affect the other in terms of where to make the search.

The motion estimation is the most computationally expensive constraint to calculate

so we need to fit a window for that and decrease the number of calculations. The color

constraint doesn’t do anything by itself so a circle fit function is used in order to find the

ball in this binary image. The search window is again adjusted using the result from the

motion vector constraint.

Before going into the details of the general procedure, let’s look at the simplified

block diagram of the overall program.

50 100 150 200 250 300

50

100

150

200

Figure 5

The program starts with initialization; this includes a pre-definition of the position

of the ball (taken as input from mouse by means of clicking on the image), pre-definition

of the ball’s approximate color.

The motion estimation is done only for a window which has a size of 80x80 pixels,

where size of the blocks are 16x16, and has a search area of 32x32. I have used pixel

accuracy because the motion vectors are extracted fast enough with windowing; but this

procedure may become faster if sub-sampling was used.

The second constraint is color constraint and the whole image is used in order to

threshold the image, because the operations are done at matrix comparisons and dividing

the matrix itself costs more than applying the threshold to the whole image. The lower

and upper threshold values are calculated recursively at the end of each frame, so the

images are pretty good after this step.

The third step is the circle fitting, which uses the motion vector constraint result as

a starting window and searches on a 30x30 window for the ball. Actually this window

doesn’t have to be this big most of the time; the motion vector estimates are pretty close

to the actual values. Here are the statistical results of the motion vector estimation error

with respect to the final result.

 Horizontal Vertical

Mean of absolute difference 1.6 1.7

Mean of difference 0.82 0.51

Variance of difference 4.87 7.97

Maximum difference 12 13

Table 1

Initialization Motion
Estimation

Color
Constraint

Circle
Fitting

Parameter
Estimation

Animation

The variance in vertical dimension is more because of the more movement in the

vertical dimension and the color estimate of the ball is not always correct but this shows

why we need to use these methods together to get more robust algorithm. The circle fit

function takes only the binary image from the color constraint and the window search and

gives the position, radius and an image of the approximate ball. The radius of the ball

may change so an expanding radius method is used in order to find the ball. With

synthetic images these function is tested. Unfortunately, there was no video sequence to

test this so it couldn’t be shown as a result.

The last step is the parameter and window update. The balls estimate point and the

estimate circle is used to extract balls color information. This is done by finding the

histogram of the enclosed region by the ball and extracting the threshold values from

these histograms. Because the point that is found is only an estimate and always has the

probability of being false, the update function uses a window size of 3 in order to

approximate the threshold values. Finite size is used in order to allow changes, like

illumination. The weights are 0.5, 0.25 and 0.25 for the current, previous and the one

before previous respectively.

An optional choice which is not directly related to the project is the animation part.

There are two choices of animation which is circling the ball and making ghost balls in

the motion trajectory. The examples of these are as follows:

 Animation Type I Animation Type II

Figure 6

The first animation is really easy to do because all the information for the animation

is already found. Only a circle is drawn on the image with the found radius to the

estimate point.

The second animation needs more calculation and more data than the first one. As

you may see from the figure 6, the original ball is not deformed and the previous balls are

shown with respect to their time of appearance. The last ball is at the farthest back and

then the third and then second and finally the current ball is on the top. This animation

requires good estimate of the current plus all last three frames. The values of the ball are

directly copied from the corresponding frames.

This kind of animations are done mostly with frame difference methods, as you

may see in this method only the ball shows this property and all the other moving objects

are not affected. The overlap of the estimate circles are the main source of animation.

Refer to the appendix for the function “anim.m” for further details.

FURTHER IMPROVEMENTS

The initialization of the procedure is done by user input. The whole search for the

image for the ball is tried but this procedure doesn’t always converge to the desired point

in the approximate ball color values and shows weakness in other aspects like non-

recoverability. Motion vector initialization is tried but when there are other things in the

scene this is not a very good approximate either. So the solution for the initialization

remains as an open question. But if the failure of the overall is somehow not a problem

than one of these weak procedures can be used.

The occlusion of the ball results in bad approximates but maybe a limit to the match

can be put and this can be detected. Because this is the same question of the initialization

problem, there is no answer can be given to this for the time being. The above procedures

are tried for this methods but their reliability is very low and may converge random

points.

Multiple ball detection can be supported, but this question can be solved very easily

with an object oriented programming language. If the ball was defined as an object that

can move and if this ball detection method is written as a function then the number of

balls will not be a problem at all.

The aim of this project is try to come up with a fast but robust method, rather than

trying to answer fancy question which may ort may not result in correct solution all the

time.

CONCLUSION

This project tries to combine video processing algorithms with image processing

algorithms in order to get more robust and faster tracking algorithm. The proposed

methods so far lacks either in robustness to noise and resolution or too slow to work in

real-time.

The proposed method works really fast even in the presence of error when

compared to the other conventional methods. The code is written in Matlab and each

frame takes around 10 seconds without additional animation and it takes around 17

seconds with animation. The same machine makes a full 320x240 block based motion

vector estimation (that is told in motion vector constraint) in 8 seconds. This shows that

this method can be applied in real time if it was written in C or C++ which are capable of

doing iterative loops much faster than Matlab.

Motion vectors are very powerful when they are combined with another more

robust method like color matching. The details of the cross usage of these constraints can

be found in the “Constraints” part of the report.

This project directly shows a daily life application of the proposed method, ghost

ball animation, e.g. think this is applied to basketball games in NBA; it will be more

interesting to watch games. The animations may be varied and modified by the need, too.

As a result using multiple constraints for object-tracking is a very powerful, robust

and faster way when compared to the conventional methods.

REFERENCES

1. Video Processing and Communications; Wang Y., Ostermann J., Zhang Y.,

2002

2. Machine Vision; Jain R., Kasturi R., Schunk B., 1995

3. Elliptical Head Tracking Using Intensity Gradients and Color Histograms;

Birchfield S., IEEE Conference on Computer Vision and Pattern

Recognition, June 1998

APPENDICES

Main.m
function main(videoin,videoout)
%This Function tracks the ball in an basketball video sequence
%Multiple constraints are used for the estimation of the ball
%These constraints are motion vectors and the color information.

%definitions
blocks=16;
mvsize=256/blocks;
rows = 240; %image size
cols = 320;
fid = fopen(videoin,'r');
fid2= fopen(videoout,'w');
imm1=ones(240,320);
imm2=ones(240,320);
imm3=ones(240,320);
last=250;
%differnece between the estimated mv and the output result
xdif=zeros(last,1);
ydif=zeros(last,1);
%Position of the ball
xpos=zeros(last,1);
ypos=zeros(last,1);
%The color values
YUV=[105 112 142];
var=[50 8 10];
YUV1=YUV;
var1=var;
 %%%
 %read very first image first image
 [y1,u1,v1,count]=myread(fid,rows,cols);
 figure;
 imagesc(y1);
 colormap(gray);
 [xin,yin]=ginput(1)
 %%%
 finish=0;
 for i=1:last
 i
 %%%
 %read second image
 [y2,u2,v2,count]=myread(fid,rows,cols);

 %check end of file
 if count==0
 finish=1;
 i=last+2;
 end

 if finish==0
 %%5
 %Find the motion vectors
 [x,y]=mv22(y1,y2,blocks,[yin xin],2);

 %The estimate motion
 transx=sum(sum(x.*(abs(x)>2)))/(sum(sum(abs(x)>2))+1e-20);
 transy=sum(sum(y.*(abs(y)>2)))/(sum(sum(abs(y)>2))+1e-20);
 xx=round(xin+transx);
 yy=round(yin+transy);
 %%
 imout=color_constraint2(y2,u2,v2,YUV,var,round(x)',round(y)');
 rmax=11;
 %The window comes from the mv22 the estimate is pretty accurate so small
window
 lim=round([xin+transx-15 xin+transx+15;yin+transy-15 yin+transy+15]);
 %Fit the ball to the image
 [imm,immf,xin,yin,r]=fit2(imout,rmax,lim);
 %Find the color information
 [YUV3,var3]=color_update(y2,u2,v2,xin,yin,r);
 xpos(i)=xin;
 ypos(i)=yin;
 xdif(i)=xin-xx;
 ydif(i)=yin-yy;
 %%%
 %color update
 if i==1
 YUV=(YUV1+YUV3)/2;
 YUV2=YUV3;
 var=(var1+var3)/2; var2=var3;
 else
 YUV=(1/2*YUV2+1/4*YUV1+1/4*YUV3);
 var=(1/2*var2+1/4*var1+1/4*var3);
 YUV1=YUV2;
 YUV2=YUV3;
 var1=var2;
 var2=var3;
 end
 %%%
 %Create animation
 if i==1
 y3=y2;
 u3=u2;
 v3=v2;
 imm3=immf;
 y_3=y2;
 u_3=u2;
 v_3=v2;
 elseif i==2
 y3=y2;
 u3=u2;
 v3=v2;
 imm2=immf;
 y_2=y2;
 u_2=u2;
 v_2=v2;
 elseif i==3
 y3=y2;
 u3=u2;
 v3=v2;
 imm1=immf;
 y_1=y2;

 u_1=u2;
 v_1=v2;
 else
 [y3 u3
v3]=anim(y2,u2,v2,immf,y_1,u_1,v_1,imm1,y_2,u_2,v_2,imm2,y_3,u_3,v_3,imm3,imm);
 imm3=imm2;
 imm2=imm1;
 imm1=immf;
 y_3=y_2;
 u_3=u_2;
 v_3=v_2;

 y_2=y_1;
 u_2=u_1;
 v_2=v_1;

 y_1=y2;
 u_1=u2;
 v_1=v2;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %Write the output to disk
 mywrite(fid2,y3,u3,v3);
 %%%
 end
 %at the end switch the second image as one
 y1=y2;
 u1=u2;
 v1=v2;

end
fclose(fid);
fclose(fid2);

Mv22.m
function [x,y]=mv22(Y1,Y2,blocks,point,window)
%This function finds the motion vectors between two images
%The motion vectors are extracted for only the window
%construct the empty motion vector
motion=zeros(size(Y1,1)/blocks,size(Y1,2)/blocks,2);
%Construct the window
limit=zeros(2,2);
%point is in the form of (y,x)
limit(1,1)=floor(point(1)/blocks)-window;
limit(1,2)=ceil(point(1)/blocks)+window;
limit(2,1)=floor(point(2)/blocks)-window;
limit(2,2)=ceil(point(2)/blocks)+window;
%The search is confined into the window size
if limit(1,1)<2
 limit(1,1)=2;
end
if limit(2,1)<2
 limit(2,1)=2;
end

if limit(1,2)>size(Y1,1)/blocks-2
 limit(1,2)=size(Y1,1)/blocks-2;
end
if limit(2,2)>size(Y1,2)/blocks-2
 limit(2,2)=size(Y1,2)/blocks-2;
end
%Over the image with the step size of blocks*blocks
SAD=zeros(2*blocks,2*blocks);
for i=limit(1,1):limit(1,2)
 for j=limit(2,1):limit(2,2)
 %Make the initializiations
 min_x=0;
 min_y=0;
 min=100000;
 A=Y2(i*blocks+1:i*blocks+blocks,j*blocks+1:j*blocks+blocks);
 for k=-(blocks-1):blocks
 for l=-(blocks-1):blocks
 y=i*blocks+k;
 x=j*blocks+l;
 %Split the desired part out of the images
 B=Y1(y:y+(blocks-1),x:x+(blocks-1));
 %Calculate the absolute error
 %The total estimation error + smoothness + distance measure
 SAD(k+blocks,l+blocks)=sum(sum(abs(A-B)))+20*((k-1)^2+(l-
1)^2);
 end
 end
 %write the motion vector to the motion matrix
 [val,min_y]=min(SAD);
 [val,min_x]=min(val);
 motion(i,j,1)=-(min_y(min_x)-blocks)+1;
 motion(i,j,2)=-(min_x-blocks)+1;
 end
end
%make the flip action and plot the MVs
x=motion(:,:,2);
y=motion(:,:,1);

colorseperator.m

function imout=color_seperator2(Y,U,V,YUV,var)
% imin is sizey x sizex x 3 (YUV image)
% YUV is a vector for desired YUV value
% Var is the allowed variance of the color
map1=zeros(size(Y,1),size(Y,2));
map2=zeros(size(Y,1)/2,size(Y,2)/2);
map=zeros(size(Y,1),size(Y,2));

YUV=double(YUV);
%Y value
map1=Y>(YUV(1)-var(1));
map1=and(map1,Y<(YUV(1)+var(1)));

%U value
map2=U>(YUV(2)-var(2));

map2=and(map2,U<(YUV(2)+var(2)));
%figure;
%imagesc(map2);
%colormap(gray);

%V value
map2=and(map2,V>(YUV(3)-var(3)));
map2=and(map2,V<(YUV(3)+var(3)));

for i=1:size(Y,1)
 for j=1:size(Y,2)
 ind1=round(i/2);
 ind2=round(j/2);
 if and(map2(ind1,ind2),map1(i,j))
 map(i,j)=1;
 end
 end
end

imout=map;

Fit2.m
function [im2,im1,best_x,best_y,best_r]=fit2(im,rmax,limit)
%This function tries to fit an circle to the image windowed with
"limit"

%limit is on the form of [xmin xmax;ymin ymax]
best=0;
best_r=0;
best_den=0;
best_x=100;
best_y=100;
for j=limit(2,1):limit(2,2)
 for i=limit(1,1):limit(1,2)
 nonzero=1;
 %for every posible r value
 for r=11:rmax
 if nonzero==1
 %search for the best fit
 match=0;
 for k=-r:r
 for l=-r:r
 if (k^2+l^2)<=r^2
 if and((j+k)<size(im,1),(i+l)<size(im,2))
 match=match+double(im(j+k,i+l));
 else
 match=0;
 end
 end
 end
 end
 %convert to density
 density=match/pi/(r)^2;
 if match>best%density<0.6

 best_den=density;
 best=match;
 best_y=j;
 best_x=i;
 best_r=r;
 %else
 % nonzero=0;
 end
 end
 end
 end
end
best_x;
best_y;
best_r;

im2=zeros(size(im,1),size(im,2));
for j=-best_r:best_r
 for i=-best_r:best_r
 if (i^2+j^2)<=best_r^2
 im2(j+best_y,i+best_x)=1;
 end
 end
end
im1=im2;
%find the outher shell
im2=double(edge(im2,'sobel'));
%insert the image
im2=(im2==0);

Color_update.m
function [YUV,var]=color_update(Y,U,V,xx,yy,r)
%This function estimates the color properties of the ball
%Uses the current image and estimate position and radius
Y1=zeros(1,4*r^2);
U1=zeros(1,4*r^2);
V1=zeros(1,4*r^2);
var=zeros(3,1);
k=0;
%Extract thye values of image if they are in the circle
for i=yy-r:yy+r
 for j=xx-r:xx+r
 if ((i-yy)^2+(j-xx)^2)<=r^2
 k=k+1;
 ind1=round(i/2);
 ind2=round(j/2);
 Y1(k)=Y(i,j);
 U1(k)=U(ind1,ind2);
 V1(k)=V(ind1,ind2);
 end
 end
end
%Clip the data
Y1=Y1(1:size(Y1,2)-sum(Y1==0));

U1=U1(1:size(Y1,2)-sum(Y1==0));
V1=V1(1:size(Y1,2)-sum(Y1==0));
%Find statistical data such as mean
errorY=sort(abs(Y1-mean(Y1)));
errorU=sort(abs(U1-mean(U1)));
errorV=sort(abs(V1-mean(V1)));
%Assign the values
YUV=[mean(Y1) mean(U1) mean(V1)];
var=[errorY(round(size(errorY,2)*2/3))
errorU(round(size(errorU,2)*2/3)) errorV(round(size(errorV,2)*2/3))];

Myread.m
function [y,u,v,count]=myread(fid,rows,cols)
%Read the next frame
 [temp,count] = fread(fid,[cols,rows],'uchar');
 y = temp';
 [temp2,count1] = fread(fid,[cols/2,rows/2],'uchar');
 u = temp2';
 [temp2,count1] = fread(fid,[cols/2,rows/2],'uchar');
 v = temp2';

Mywrite.m
function mywrite(fid,y,u,v)
%Write the next frame
 fwrite(fid,y','uchar');
 fwrite(fid,u','uchar');
 fwrite(fid,v','uchar');

