
 1

Digital Processing of Analog
Television

Lior Zimet

EE392J Project Report, Winter 2002
Department of Electrical Engineering, Stanford University, CA 94305, USA

Abstract
NTSC composite color video is currently one of the most common formats of video
broadcasting. Although the signal is analog, it can be decoded almost entirely digitally.
Analog decoders offer limited video quality and require adjustments. Using digital
techniques to implement NTSC decoding offers minimum adjustments and excellent
video quality. This project presents the building blocks of digital processing of an NTSC
color signal. The processing stages include sampling the analog signal, synchronization
information detection, luminance and chrominance separation, color demodulation, and
interlace to progressive conversion for display on PC monitor in RGB color space.

1. Introduction
Analog decoders of color video signal have been around for some time. However, they
have been difficult to use and provide limited video quality. Digital video does far more
compared with analog. Its most exciting aspects are the tremendous possibilities, which
are denied to analog technology. By sampling the 1D analog composite signal, we can
perform the decoding digitally on a pixel base, and apply many different algorithms to
get better video quality.
The NTCS composite video standard, defined in 1952, is 2:1 interlaced with 262.5 lines
per field (525 lines per frame), 60 fields per second, and 4:3 aspect ratio. The DC level of
the analog signal defines the monochrome luminance information. The Hue and
saturation information of the color is transmitted using a 3.58MHz sub-carrier within the
same bandwidth as the monochrome signal. I and Q (or U and V) are used to modulate
the color sub-carrier in phase quadrature. Timing information such as vertical sync and
horizontal sync are inserted every field or line period respectively to define the beginning
of a field, beginning of a line, and blanking information.

TIMINGtVtUYNTSC +++=)cos()sin(ωω

To display a composite NTSC signal on a progressive RGB display such as a computer
monitor, several stages of processing need to be carried out. Figure 1 depicts a block
diagram of digital processing system for an analog TV signal. The first 2 stages of
preparing the analog signal and converting it to digital are done by hardware and will be
discussed in section 2. The samples out of the ADC are digital quantized form of the 1D
signal. To extract the valid video data, in stage 3, the timing information is used and the
data is organized in a field matrices. Each raw in the matrix represents the active video of

 2

one horizontal line. This stage is discussed in section 3. For easier processing of the
chrominance and luminance separation, the data is resampled to four times the sub-carrier
frequency. Y/C separation is the most challenging part of composite video processing. In
section 5 we discuss the different methods for implementing Y/C separation. In the next
stage the color information is being demodulated from the sub-carrier as discussed in
section 7. To display the information on a progressive display such as a PC monitor,
interlace to progressive conversion as well as YUV to RGB conversions are performed.
These two stages are discussed in sections 8 and 9.

Composite
Video

DC
Restoration
and Gain
Control

ADC
10 bit Sync

Detection
and Active

Video
Extraction

Resampler
4XFsc

Y+C
Y/C

Separation
+Motion

Detection

Y

C

Color
De-

modulation

De-
Interlacer

Motion

YUV
to

RGB
Display

RGB Y, U, V
Fields

Hardware Software

Y, U, V
Frames

Y+C

Figure 1 - System block diagram

2. Sampling the analog composite video
The Analog front end of the system, which is implemented in hardware, performs the
following functions:

• DC restore
• Gain control
• Analog to digital conversion

The DC restoration is required because the video signal is usually AC coupled. The
problem with this is that the video is inherently a DC signal. For proper decoding, certain
reference parts of the signal, such as the horizontal sync, must always be at the same
voltage. The DC restore circuit is used to place these pats of the video signal at a voltage
level so that the ADC will create the expected code.
The gain control is needed because the baseband video signal may come in different
levels, depends on the video source and system terminations. The gain may be manually
controlled per source, or in more complex systems it can be adjusted in real time with a
feedback from the digital processing block. The overall gain of the signal should be such
that it takes advantage of the maximum dynamic range of the ADC. In some systems, the
gain control is done in the digital domain after the ADC.

 3

For video applications a 10bit ADC is usually sufficient. The smallest value represents
the sync level. The luminance signal occupies the amplitude from blank level to peak
white, and the portion above the blank level is reserved for the chrominance as depicted
in figure 3. An analog operational amplifiers circuit usually realizes both the DC restore
and the gain control. The desired sampling clock feeds the ADC, and the digital samples
are then captured for digital processing.
In this project, a front end of an existing system with a 27MHz-sampling rate was used,
and the digital data was captured to a file to perform the digital processing using Matlab.

3. Sync detection and Active video extraction
The sampled analog composite video is captured to a binary file. Every word (2 bytes) in
the file represents one sample of 10 bits (6 most significant bits are ignored). The samples
are 37ns spaced in time (27MHz sampling clock). Using the timing information
embedded in the composite signal, the active video of each line can be extracted and
placed in a matrix for further processing.
Figure 2 depicts the vertical blanking information as plotted directly from the sampled
video. The blanking period starts from line 1 of each field and includes the vertical sync
(vsync) pulse, which defines the beginning of a new field. Lines 10-21 are usually used
for VBI data (vertical blanking interval) such as close caption and teletex, and line 22 is
the first line with active video. The active video lines continue until line 262.5 where the
next field blanking information starts. This interval ends in line 525.
The bottom of the sync is the smallest value in the sampled data stream and can be
identified by using a threshold. The vsync pulse can be detected by looking for the
specific timing information of six wide negative pulses with positive pulses (hsync wide)
between them.

V E R T IC A L S Y N C A N D B L A N K IN G

V S Y N C

line 1 line 22 4 6 10

Figure 2 - Vertical sync and blanking

 4

Figure 3 depicts one video line as plotted directly from the sampled data. The line starts
from the horizontal sync (hsync), continues with the color burst information, which
follows by the active video information. The hsync detction is done again by using a
threshold. By knowing the width of the pulse (4.7us) and the relative active video starting
point, we can extract the active video samples from each line and arrange it in a matrix
format. The final matrix for each video sequence is a 3D matrix such that each 2D matrix
is one field and each raw is one active line. For 27MHz sampling rate, each field occupies
1440 pixels per line of active video and 254 lines (excluding the blanking lines).

ONE LINE OF NTSC SIGNAL

HSYNC

COLOR BURST

ACTIVE VIDEO

SY NC LEV EL

BLA NK LEV EL

PEA K WHITE

SIGNA L PEA K

Figure 3 - One line of NTSC signal

4. Digital Phase Lock Loop
As depicted in figure 3, each video line contains color burst information. The color burst
information is located in the “back porch” of the video line, which starts after the hsync
and ends before the active video. As depicted in figure 4, the color burst consists of 9
cycles of the sub-carrier with the specific phase that was used to modulate the color in the
current video line. The decoder can extract the color burst phase and frequency of each
line, and perform an accurate demodulation of the color. In NTSC, the phase of the color
burst is inverted in every line, and at the beginning of every odd field. Four complete
fields are required to repeat the interval of the color burst phase. We will see later that the
alternating phase of the color burst will be very useful for separating luminance from
chrominance.

 5

COLOR BURST INFORMATION

HORIZONTA L SYNC

PHA SE

BACK PORCH

Figure 4 - Color burst information

To extract the color burst phase and frequency for each line, a digital PLL (Phase Lock
Loop) must be implemented. For each video line, the phase in which the color bust starts
(0 or 180) and the exact frequency are stored. The phase can be easily detected by
looking at the first peak of the color burst. To extract the frequency in an accurate way,
the color burst is interpolated to get a very smooth sine wave, and zero crossing around
the blank level is detected. The desired frequency can be found by calculating the mean
crossing distance between every cycle in the interpolated color burst.
Experimental results of color demodulation with the extracted color burst frequency show
moderate performance of the color accuracy, and a better algorithm for frequency
tracking can be developed.

5. Y/C separation
The luminance and the chrominance information are typically combined in the encoder
by simply adding them together to form the composite signal. The result is that
chrominance and high frequency luminance signals occupy the same portion of the
frequency spectrum. As a result, separating them in the decoder is difficult.
There are two commonly seen artifacts when displaying video picture from the composite
video source namely, cross-luminance and cross-chrominance. Cross-luminance happens
when the modulated color signal is not completely removed from the composite signal
and being decoded as luminance. Cross-chrominance happens when high-frequency
luminance signal from the chrominance portion of the frequency band is not removed
completely, and decoded as chrominance.
A better video quality can be achieved by performing the Y/C separation digitally, using
more complex techniques.

 6

The NTSC frequency spectrum occupies 6MHz bandwidth. The luminance and
chrominance information is interleaved in the spectrum as depicted in figure 5. That will
allow the usage of use better techniques for Y/C separation as discussed in sections 5.3-5.5.

0.0 1.0 2.0 3.0 4.03.58

Amplitude

Frequency
(MHz)

Chrominance
Sub-carrier

Y U
V

U
V

5.1. Re-sampler
The NTSC composite video signals is formed by superimposing the quadrature
modulated chrominance signal onto the luminance signal. The U and V are modulated
using different phase of the sub-carrier. For simpler Y/C separation and color
demodulation, the input analog composite signal is resampled from 27MHz to four times
the chrominance sub-carrier frequency. In section 5.3-5.5 we will see that the resampling
structures every pixel as UY ± or VY ± , which makes the separation easier. In section 7
we will see that the sine and cosine coefficients for the color demodulation can be as
simple as [0, 1, -1].
To perform the down sampling from 27MHz to 4x3.58MHz, an up-sampling by 35 and a
down-sampling by 66 are performed.

5.2. Bandpass and Notch filters
The conventional way to perform Y/C separation is using a notch filter to extract the
luminance, and a bandpass filter to extract the chrominance. Usually, the notch filter and
the bandpass filter are centered at the chrominance sub-carrier with a span of MHz3.1± .
For better performance, a non-symmetric filter can be used to match the color spectrum
as depicted in figure 5.
Obviously, when using notch filter, some of the high frequency luminance information
will be lost, and cross color and cross luminance will appear in the decoded video.

F

Y U,V Y YU,V

15.734 KHz

29.97 Hz
Spacing

Figure 5 - NTSC signal spectrum

 7

Figure 6 shows an example of the luminance information of a sine test pattern with the
use of a notch filter compared with a 3D comb filter (discussed in section 5.5).
V ER TIC AL S IN D E C OD E D W ITH N OTC H FILTER

LO S T O F LUM INANCE
 HIG H FREQ UENCIES

V ER TIC AL S IN D E C OD E D W ITH 3D C OMB FILTER

Figure 6 - Sine pattern decode with notch and 3D comb filters

5.3. 1D comb filter
To take advantage of the way the chrominance and the luminance were combined in the
composite signal spectrum, a comb filter can be used. Looking at the pixel domain, the
luminance and chrominance information are combined in such a way that spatial
processing can be used to perform the separation. Figure 7 depicts pixels of three
consecutive lines.

 As seen, the chrominance signals U, V can be separated from the luminance signal Y by
adding the center line pixel to either the upper line pixel or the lower line pixel. This
operation assumes that there is no change in Y or U, V between adjacent pixels.

Y =((Ycenter+Ccenter) + (Yupper−Cupper)) / 2

C = ((Ycenter+Ccenter) − (Yupper−Cupper)) / 2

Or

Y =((Ycenter+Ccenter) + (Ylower−Clower)) / 2

C = ((Ycenter+Ccenter) − (Ylower−Clower)) / 2

Y+U

Y-U

Y+U

Y-V

Y+V

Y-V

Y-U

Y+U

Y-U

Y+V

Y-V

Y+V

Figure 7 - Vertical comb filter using 3 lines

 8

Or for better results, a three-line comb filter is implement by using the following
equations:

Y = ((Ycenter+Ccenter) + (Yupper−Cupper) + (Ycenter+Ccenter) + (Ylower−Clower)) / 4

C = ((Ycenter+Ccenter) − (Yupper−Cupper) + (Ycenter+Ccenter) − (Ylower−Clower)) / 4

5.4. 2D adaptive comb filter
Although the simple vertical comb filter provides a better degree of luminance and
chrominance separation compared to traditional notch and bandpass filter approach, it
performs perfectly only for vertically orientated structures in a picture. If the information
in adjacent lines is different, decoding errors known as hanging dots occur. Therefore,
adaptive technique must be employed to improve the picture quality. The two-
dimensional adaptive filter combines both the vertical comb filter with adaptive
weighting, and the horizontal notch filter.
The simple 3-line comb filter is based on equally weighing result from the upper line and
lower line pixel relative to the center line pixel. Therefore, if the color transition between
the lines is large, the result may be incorrect. By employing adaptive method, the weights
for mixing two pixels can be determined according to the amount of color change on the
upper or lower pixels. To determine the amount of color change, the chrominance
information from the bandpass filter of the pixels is being compared and a weight
coefficient is determined. For example, if the center pixel of the line is the same as the
upper line pixel but different than the lower line pixel, the adaptive comb will generate a
weight of zero for the lower line pixel and a weight of one for the upper line pixel. With
the simple comb filter, it will simply average the upper and lower pixels and hanging dots
artifact will be seen. The above method can be summarized with the following equations:

21 bCaCChroma +=

a, b = the weighting coefficients
C1, C2 = the chrominance obtained by using simple 2-line comb filter

Whenever the color transition indicates that horizontal edge is detected, and both C1 and
C2 will not perform a good Y/C separation, the algorithm use the simple notch filter for
Y/C separation.

5.5. 3D adaptive comb filter
3D adaptive Y/C separation further improves the luminance-chrominance separation
process such that the separation is done perfectly for the stationary parts of the image.
If the picture is stationary, the pixels between frames (temporal direction) are identical,
except that the modulated chrominance phase is inverted (180 degrees). Figure 8 depicts
the luminance and chrominance information in the pixel domain with regards to time.
By adding and subtracting pixels between frames, the luminance and chrominance can be
perfectly separated from the composite signal.

 9

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Field n-2 Field n-1 Field n Field n+1 Field n+2

Figure 8 - Luminance and Chrominance information on the temporal axis

However, if the area of the picture contains motion, pixels between frames are no longer
identical, and a 2D adaptive Y/C separation will provide better results. Therefore, a
motion detector is required to identify the areas of the picture containing motion, such
that the Y/C separator can adaptively mix between temporal and spatial filters.
Figure 9 depicts a simple block diagram of the 3D Y/C separator.

Notch Filter

3D Comb Filter

Vertical 1D
Seperator

Y

C

Vertical and
Horizontal

Edge Detector
for 2D Adaptive

Comb Filter

Y

C

Motion
Detector

for 3D Adaptive
Comb filter

Y

C

Y

C

Y

C

Y+C

Figure 9 - Y/C separation block diagram

 10

Figure 10 shows the “Cheer leader” sequence decoded with a 3D comb filter without the use of
motion detection. The motion artifacts can be easily seen where motion appear in the scene.

"CHEER LEADER" W ITH 3D COM B AND NO M OTION DETECTION

M OTION ARTIFACTS

Figure 10 - Motion artifacts in 3D comb filtering

Figure 11 shows a still image test pattern that was decoded using 3 different methods:
Notch filter, 2D comb filter and 3D adaptive comb filter. Using the Notch filter, we can
see that the image is blurred, high luminance frequency is missing and the artifacts of
cross-luminance and cross-chrominance. With 2D comb filter, in difficult areas such as
the single line pattern (towards the top of the image), hanging dots appear. The 3D
adaptive separation is giving a perfect result on this still image pattern.

 11

N OTCH FILTE R Y/C S EP ER ATION

CROSS-LUM INANCE

CROSS-CHROM INANCE

2D AD AP TIVE C OMB FILTER Y/C S EPER ATION

HANGING DOTS ARTIFACT

3D adaptive Y/C separation

Figure 11 - Test pattern decoded with 3 different Y/C separation methods

 12

6. Motion detector
One of the key components in 3D Y/C separation and de-interlacing is the motion detector.
The motion detector that was implemented is based on the sum of absolute difference
method. For each pixel, large motion and small motion are detected. Large motion
detection is depicted in figure 12. For each pixel in field n, the value of the same pixel from
field n-2 and n+2 are compared. Because these two pixels will have the same chrominance
phase, the difference between the pixels can be directly compared with a noise threshold.

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Field n-2 Field n-1 Field n Field n+1 Field n+2

Figure 12 – Small motion detection

Small motion detection is depicted in figure 13. Here, only the luminance information is
used, and the difference is again compared with a noise threshold.

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Y-C

Y+C

Field n-2 Field n-1 Field n Field n+1 Field n+2

Figure 13 – Small motion detection

The results from two methods are then averaged and compared against a motion
threshold: Pixel Motion = (Large Motion detector + Small Motion detector) /2

 13

7. Color demodulation
The chrominance demodulator accepts modulated chroma data from the Y/C separator,
and the color burst information that was extracted before. It generates the U and V color
information. During active video, the chrominance data is demodulated using sine and
cosine sub-carrier data as shown in figure 14.

The chrominance signal processed by the demodulator may be represented by:

() ()tVtUChroma ωω cossin +=

U is obtained by multiplying the chrominance data by ()tωsin2 .
V is obtained by multiplying the chrominance data by ()tωcos2 .

 () ()[]() () ()tVtUUttVtU ωωωωω 2sin2cossin2cossin +−=+

 () ()[]() () ()tUtVVttVtU ωωωωω 2sin2coscos2cossin +−=+

The double frequency components are then removed by low-pass filtering, resulting in
the U and V signals being recovered.

8. De-interlacer
In traditional NTSC TV systems, the display is interlaced at a rate of 60 fields/second.
The vertical resolution is 480 lines, but only 240 scan lines are displayed with each field
and the total frame rate is 30 frames/second.
The De-interlacer converts this interlaced 60 fields/second sequence with half resolution
into a progressive 60 frames/second with full resolution.
In this project, a motion adaptive de-interlacer was implemented. The motion information
is taken from the same motion detector that was developed for the 3D Y/C separation.
A block diagram of the de-interlacer is depicted in figure 15.

Chrominance
From Y/C
Separator

2cos(2 Fsct)

2sin(2 Fsct)

LPF

LPF

V

U

Figure 14 - Color demodulation

 14

Working in the pixel domain, in areas of the image where motion is present, the image is
interpolated. In static areas the image is weaved. The interpolation for the missing pixel is
done by averaging the pixels in the adjacent lines within the same field. The weave
operation is done by simply copying the missing pixel from the same pixel location in the
adjacent field.

9. YUV to RGB color space conversion
To display the progressive information on a PC monitor, a conversion from a YUV color
space to RGB color space is required.
The YUV information was prepared in a 4D matrix such that each 3D matrix holds the
YUV information for each frame.
The following conversion equations were used to convert to RGB:

R = Y + 1.140V
G = Y – 0.395U-0.581V
B = Y + 2.032U

10. Additional experimental results
The implemented video processing was tested on several test patterns and motion
sequences. Following are selected decoded frames in progressive resolution and RGB
color space.
Figure 16 is the Snell & Wilcox challenging test sequence. In this sequence, the round
plate is the only object moving in the scene, and in different areas of the picture there are
patterns of high frequency luminance with vertical, diagonal and horizontal information.
The figure shows the same frame decoded using notch filter, 2D adaptive filter and 3D
adaptive filter for the Y/C separation. It can be easily observed that the use of notch filter
results in cross-luminance and cross-chrominance and lost of luminance high frequencies.
The 2D comb filter performs slightly better, but it still has a lot of artifacts that mainly
caused by a wrong decision of the edge detection to switch to notch filter.
The 3D comb filter performs much better but still has artifacts that happen due to wrong
motion detection in the diagonal high frequencies areas.

Motion
?

Interpolate
Within the
Same Field

Merge With
Neighbor

Field

No

Yes

Progressive
YUV

Interlace
YUV

Figure 15 - De-interlacer operation

 15

SN ELL & W ILC OX WITH N OTC H FILTER

S N ELL & W ILC OX 2D AD AP TIV E C OMB FILTE R

 S N E LL & W ILC OX W ITH AD AP TIV E 3D C OMB FILTE R

Figure 16 - Snell & Wilcox test pattern decoded with 3 different Y/C separation methods

 16

Figure 17 is a frame from the “Cheer Leader” sequence decoded using 3D adaptive comb
filter. In this sequence, there is a lot of motion in the picture, and some of the motions are
fairly large (cheer leader hands). The frame was decoded correctly and there are hardly
any motion artifacts.

"CHEER LEADER" W ITH 3D ADAPTIVE COM B FILTER

11. Conclusions
In this project, a full implementation for digital processing of analog TV signal was
accomplished. It is clear that digital processing of the analog composite video enables the
usage of different algorithms that cannot be implemented in the analog domain. The
video quality can be highly improved and decoding can be easier and more robust.
The following was observed during implementation and testing:

• The Y/C separation as well as the de-interlacer performance is highly depended
on the motion detection accuracy. The motion detection algorithm can be
improved with the expense of memory usage and computations.

• Some of the Y/C separation artifacts cannot be removed with the 3D adaptive
comb filter. For example, high spatial frequency moving objects.

• For accurate color demodulation, a good color burst phase lock loop is required.

12. References
[1] Video Demystified, Keith Jack, Third edition
[2] The Art of Digital Video, John Watkinson
[3] Video Processing and Communications, Yao Wang. Chapters 1,3,4
[4] N.M. Tekalp, Digital Video Processing, Prentice Hall, 1995

 17

Apendix – Matlab code

function [video_mat,color_burst_mat]=video_extract(raw_video)

%**
% Written by Lior Zimet March 2002
%
% THIS FUNCTION EXTRACT THE ACTIVE VIDEO AND THE COLOR BURST INFORMATION
% FROM A BINARY FILE OF 27MHZ SAMPLED VIDEO.
%
% INPUT - RAW VIDEO BINARY FILE
%
% OUTPUT - 3D MATRIX OF ACTIVE VIDEO. EACH 2D MATRIX IS ONE FIELD
% EACH RAW IS ONE VIDEO LINE
% THE COLOR BURST MAT CONTAINS THE FREQUENCY AND PHASE IN EACH
% VIDEO LINE
%**

% SAMPLING RATE IS 27MHZ MEANING 37ns PERIOD.
[m,n]=size(raw_video);
sync_threshold=800; %threshold for sync detection
vsync_period_threshold=700;
hsync_period_threshold=100;

% First vertical sync detection

vsync_flag=0;
hsync_flag=0;
vsync_progress=0;
vsync_counter=0;
hsync_counter=0;

for i=1:m
 if raw_video(i) < sync_threshold
 vsync_counter=vsync_counter+1;
 if vsync_counter > vsync_period_threshold
 vsync_flag=1;
 end
 else
 if vsync_flag==1
 vsync_progress=vsync_progress+1;
 vsync_flag=0;
 vsync_counter=0;
 if vsync_progress == 6
 end_of_1st_vsync=i
 vsync_progress=0;
 break;
 end
 end
 end
end

 18

% From end of VSYNC, detect every HSYNC and store active video field
% from video lines 10-262 for field0 and 272-525 for field1

% End of VSYNC is at the end of line 6
% Lines 7,8,9 has equalizing pulses and HSYNC pulse every half line period

active_pxl_per_line= 1440;
line_number=0;
field_number=1;
hsync_low2active_video=round(9.2/0.037); %active video is 9.2us from falling
edge of HSYNC
hsync_low2color_burst=round(5.3/0.037); %color burst starts 5.3us from
falling edge of HSYNC
color_burst_length=round(10*(1/3.579545e6)/37e-9);%color burst length is 9+-1
cycles of 3.579545MHZ

i=end_of_1st_vsync;
while i<=m
 if raw_video(i) < sync_threshold
 hsync_counter=hsync_counter+1;
 vsync_counter=vsync_counter+1;
 if vsync_counter > vsync_period_threshold
 vsync_flag=1;
 end
 if (hsync_counter > hsync_period_threshold & hsync_counter <
vsync_period_threshold)
 hsync_flag=1;
 else
 hsync_flag=0;
 end
 else
 % HSYNC case
 if hsync_flag == 1
 line_number=line_number+1;
 start_of_active_vid=i-hsync_counter+hsync_low2active_video;
 video_mat(line_number,:,field_number)=...
 raw_video(start_of_active_vid:start_of_active_vid+active_pxl_per_line-
1);

 %Extracting the line color burst frequency
 start_of_color_burst=i-hsync_counter+hsync_low2color_burst;

color_burst=raw_video(start_of_color_burst:start_of_color_burst+color_burst_length)
;
 cb_interp=interp(color_burst,100)-color_burst(1);
 cb_sign=sign(cb_interp)+1;
 cb_zero_cross=diff(cb_sign);
 [zero_index,s]=find(cb_zero_cross>0);
 color_burst_mat(line_number,1,field_number)=1/(mean(diff(zero_index(4:end-
4)))*37e-11);
 %color burst phase 1=0 degrees -1=180 degrees
 color_burst_mat(line_number,2,field_number)=cb_sign(700)/2;

 %reseting counters and progress i to the next line
 i=start_of_active_vid+active_pxl_per_line-1;
 vsync_counter=0;
 hsync_counter=0;
 hsync_flag=0;

 19

 % VSYNC case
 elseif vsync_flag==1
 vsync_progress=vsync_progress+1;
 vsync_flag=0;
 vsync_counter=0;
 hsync_flag=0;
 hsync_counter=0;
 if vsync_progress == 6
 line_number=0;
 field_number=field_number+1
 vsync_progress=0;
 end
 % Equalizing pulses case
 else
 vsync_counter=0;
 hsync_counter=0;
 end
 end
 i=i+1;
end

 20

function [Y, C,MD_mat]=YC_seperation(video_mat)

%***
% Written by Lior Zimet March 2002

% THIS FUNCTION Y/C SEPARATION USING 3D ADAPTIVE METHODE
% IT INCLUDES RESAMPLER TO 4x Fsc, NOTCH FILTER, 2D ADAPTIVE,
% 3D COMB FILTER, AND MOTION DETECTION
%
% INPUT - 3D FIELDS MATRIX OF ACTIVE VIDEO
%
% OUTPUT - 3D MATRIX OF LUMINANCE
% 3D MATRIX OF CHROMINANCE
% MOTION DETECTION MATRIX TO BE USED LATER BY THE DE-INTERLACER
%
%**

[m,n,field]=size(video_mat);
[b,a] = butter(24,[2.28 4.88]/7.16,'stop');
y_edge_th=300;
c_edge_th=500;
noise_th=50;

%resample to 4*Fsc (T=69.8ns)
for f=1:field
 video_mat_4Fsc(:,:,f)=resample(video_mat(:,:,f)',35,66)';
end

clear video_mat;

[m,n,field]=size(video_mat_4Fsc);

% 1D and 2D Y/C seperation
for f=1:field
 % first and last line of each field
 Y1D(1,:,f)=(video_mat_4Fsc(1,:,f)+video_mat_4Fsc(2,:,f))/2;
 Y1D(m,:,f)=(video_mat_4Fsc(m-1,:,f)+video_mat_4Fsc(m,:,f))/2;
 C1D(1,:,f)=(video_mat_4Fsc(1,:,f)-video_mat_4Fsc(2,:,f))/2;
 C1D(m,:,f)=(video_mat_4Fsc(m-1,:,f)-video_mat_4Fsc(m,:,f))/2;

 Y_notch(1,:,f)=filtfilt(b,a,video_mat_4Fsc(1,:,f));
 Y_notch(2,:,f)=filtfilt(b,a,video_mat_4Fsc(2,:,f));
 C_notch(1,:,f)=video_mat_4Fsc(1,:,f)-Y_notch(1,:,f);
 C_notch(2,:,f)=video_mat_4Fsc(2,:,f)-Y_notch(2,:,f);

 for i=2:m-1
 % Notch filter
 Y_notch(i+1,:,f)=filtfilt(b,a,video_mat_4Fsc(i+1,:,f));
 C_notch(i+1,:,f)=video_mat_4Fsc(i+1,:,f)-Y_notch(i+1,:,f);
 % 1D Y/C seperation - vertically
 Y1D1=(video_mat_4Fsc(i,:,f)+video_mat_4Fsc(i-1,:,f))/2;
 Y1D2=(video_mat_4Fsc(i,:,f)+video_mat_4Fsc(i+1,:,f))/2;

 C1D1=(video_mat_4Fsc(i,:,f)-video_mat_4Fsc(i-1,:,f))/2;

 21

 C1D2=(video_mat_4Fsc(i,:,f)-video_mat_4Fsc(i+1,:,f))/2;

 % adaptive 2D for C
 pc1=abs(C_notch(i-1,:,f)+C_notch(i,:,f))/2;
 pc2=abs(C_notch(i,:,f)+C_notch(i+1,:,f))/2;
 for j=1:n
 if (pc1(j)==0 & pc2(j)==0)
 ac1=0.5;
 ac2=0.5;
 C1D(i,j,f)=ac1*C1D1(j)+ac2*C1D2(j);
 elseif (pc1(j)==0 & pc2(j)~=0)
 ac1=1;
 ac2=0;
 C1D(i,j,f)=ac1*C1D1(j)+ac2*C1D2(j);
 elseif (pc1(j)~=0 & pc2(j)==0)
 ac1=0;
 ac2=1;
 C1D(i,j,f)=ac1*C1D1(j)+ac2*C1D2(j);
 elseif (pc1(j)>c_edge_th & pc2(j)>c_edge_th)
 C1D(i,j,f)=C_notch(i,j,f);
 else
 ac1=pc2(j)/(pc1(j)+pc2(j));
 ac2=pc1(j)/(pc1(j)+pc2(j));
 C1D(i,j,f)=ac1*C1D1(j)+ac2*C1D2(j);
 end
 end

 % adaptive 2D for Y
 py1=abs(Y_notch(i-1,:,f)-Y_notch(i,:,f))/2;
 py2=abs(Y_notch(i,:,f)-Y_notch(i+1,:,f))/2;
 for j=1:n
 if (py1(j)==0 & py2(j)==0)
 ay1=0.5;
 ay2=0.5;
 Y1D(i,j,f)=ay1*Y1D1(j)+ay2*Y1D2(j);
 elseif (py1(j)==0 & py2(j)~=0)
 ay1=1;
 ay2=0;
 Y1D(i,j,f)=ay1*Y1D1(j)+ay2*Y1D2(j);
 elseif (py1(j)~=0 & py2(j)==0)
 ay1=0;
 ay2=1;
 Y1D(i,j,f)=ay1*Y1D1(j)+ay2*Y1D2(j);
 elseif (py1(j)>y_edge_th & py2(j)>y_edge_th)
 Y1D(i,j,f)=Y_notch(i,j,f);
 else
 ay1=py2(j)/(py1(j)+py2(j));
 ay2=py1(j)/(py1(j)+py2(j));
 Y1D(i,j,f)=ay1*Y1D1(j)+ay2*Y1D2(j);
 end
 end
 end
end

% 3D Y/C seperation - temporally

Y3D(:,:,1)=(video_mat_4Fsc(:,:,1)+video_mat_4Fsc(:,:,3))/2;
% first field has no previous field

 22

Y3D(:,:,field)=(video_mat_4Fsc(:,:,field)+video_mat_4Fsc(:,:,field-2))/2;
% last field has no next field
Y3D(:,:,2)=(video_mat_4Fsc(:,:,2)+video_mat_4Fsc(:,:,4))/2;
% first field has no previous field
Y3D(:,:,field-1)=(video_mat_4Fsc(:,:,field-1)+video_mat_4Fsc(:,:,field-3))/2;
% last field has no next field
C3D(:,:,1)=video_mat_4Fsc(:,:,1)-Y3D(:,:,1);
C3D(:,:,2)=video_mat_4Fsc(:,:,2)-Y3D(:,:,2);
C3D(:,:,field)=video_mat_4Fsc(:,:,field)-Y3D(:,:,field);
C3D(:,:,field-1)=video_mat_4Fsc(:,:,field-1)-Y3D(:,:,field-1);

for f=3:field-2

Y3D(:,:,f)=(video_mat_4Fsc(:,:,f)+video_mat_4Fsc(:,:,f+2)+video_mat_4Fsc(:,:,f)+vid
eo_mat_4Fsc(:,:,f-1))/4;
 C3D(:,:,f)=video_mat_4Fsc(:,:,f)-Y3D(:,:,f);
end

% Motion detection and Y/C adaptive decision
LF_sad=zeros(m,n,field);
HF_sad=zeros(m,n,field);
%HF_sad(:,:,1:2)=100;

LF_sad(:,:,1)=abs(diff(Y_notch(:,:,1:2:3),1,3));
LF_sad(:,:,2:2:end-1)=abs(diff(Y_notch(:,:,1:2:end),1,3));
LF_sad(:,:,3:2:end)=abs(diff(Y_notch(:,:,2:2:end),1,3));

for f=1:field-3
 LF_sad(:,:,f)=(LF_sad(:,:,f)+LF_sad(:,:,f+2))/2;
 LF_sad(:,:,f+1)=(LF_sad(:,:,f+1)+LF_sad(:,:,f+3))/2;
end
 LF_sad(:,:,field-2)=(LF_sad(:,:,field-2)+LF_sad(:,:,field))/2;
 LF_sad(:,:,field-1)=(LF_sad(:,:,field-1)+LF_sad(:,:,field-3))/2;
 LF_sad(:,:,field)=(LF_sad(:,:,field)+LF_sad(:,:,field-2))/2;

for f=3:field-2
 HF_sad(:,:,f)=abs(video_mat_4Fsc(:,:,f-2)-video_mat_4Fsc(:,:,f+2));
end
MD_mat=((LF_sad+HF_sad)/2>noise_th);

clear video_mat_4Fsc;
clear Y_notch;
clear LF_sad;
clear HF_sad;

Y=Y3D;
C=C3D;
Y(MD_mat==1)=Y1D(MD_mat==1);
C(MD_mat==1)=C1D(MD_mat==1);

 23

function [YUV_field]=chroma_demodulator(Y,C,color_burst)

%***
% Written by Lior Zimet March 2002

% THIS FUNCTION PERFORMS THE COLOR DEMODULATION
%
% INPUT - 3D LUMINANCE AND CHROMINANCE MATRICES.
% COLOR BURST INFORMATION MATRIX
%
% OUTPUT - 4D MATRIX OF YUV FIELDS
%
%**

[m,n,field]=size(C);
sample_time=69.8e-9; %4*Fsc sampling period
[b,a] = butter(12,0.6/(3.58)); %filter coefficients for LPF
YUV_field=zeros(m,n,3,field);

for f=1:field
 YUV_field(:,:,1,f)=Y(:,:,f)*(255/max(max(Y(:,:,f))));
end
clear Y;

for f=1:field
 for l=1:m
 U(l,:)=filtfilt(b,a,2*sin(2*pi*color_burst(l,1,f)*(0:sample_time:(n-
1)*sample_time)+color_burst(l,2,f)*pi+pi).*C(l,:,f));
 V(l,:)=filtfilt(b,a,2*cos(2*pi*color_burst(l,1,f)*(0:sample_time:(n-
1)*sample_time)+color_burst(l,2,f)*pi+pi).*C(l,:,f));
 end

 YUV_field(:,:,2,f)=U*(112/max(max(U)));
 YUV_field(:,:,3,f)=V*(157/max(max(V)));

end

 24

function [RGB_frame]=deint(YUV_field,MD_mat)

%***
% Written by Lior Zimet March 2002
%
% THIS FUNCTION IMPLEMENTS INTERLACE TO PROGRESSIVE CONVERSION
% AND YUV TO RGB COLOR SPACE CONVERSION
%
% INPUT - 4D MATRIX OF YUV FIELDS
%
% OUTPUT - 4D MATRIX OF RGB FRAMES
%
%**

[m,n,k,field]=size(YUV_field);

YUV_frame=zeros(2*m,n,3,field);

%preparing matrices with double vertical resolution
YUV_frame(1:2:end,:,:,1:2:field)=YUV_field(:,:,:,1:2:field);
YUV_frame(2:2:end,:,:,2:2:field)=YUV_field(:,:,:,2:2:field);

clear YUV_field;

for f=1:2:field-1
 for i=2:m
 for j=1:n

 %no motion detected for this pixel
 if MD_mat(i,j,f+1)==0
 YUV_frame(i*2,j,:,f)=YUV_frame(i*2,j,:,f+1);
 % motion detected --> interpolate vertically
 else
 YUV_frame(i*2,j,:,f)=(YUV_frame(i*2-1,j,:,f)+YUV_frame(i*2+1,j,:,f))/2;
 end

 %no motion detected for this pixel
 if MD_mat(i,j,f)==0
 YUV_frame(i*2-1,j,:,f+1)=YUV_frame(i*2-1,j,:,f);
 % motion detected --> interpolate vertically
 else
 YUV_frame(i*2-1,j,:,f+1)=(YUV_frame(i*2-
2,j,:,f+1)+YUV_frame(i*2,j,:,f+1))/2;
 end

 end
 end
end

%YUV to RGB conversion

 25

[m,n,k,frame]=size(YUV_frame);
conversion_matrix=[1.000 0.000 1.140; 1.000 -0.395 -0.581; 1.000 2.032 0.001];
for f=1:frame
 for i=1:m
 for j=1:n
 yuv_set=[YUV_frame(i,j,1,f),YUV_frame(i,j,2,f),YUV_frame(i,j,3,f)]';
 RGB_frame(i,j,1:3,f)=conversion_matrix * yuv_set;
 end
 end
 %Prepare the RGB matrices
 if min(min(RGB_frame(:,:,1,f)))<0
 RGB_frame(:,:,1,f)=RGB_frame(:,:,1,f)+abs(min(min(RGB_frame(:,:,1,f))));
 end
 if min(min(RGB_frame(:,:,2,f)))<0
 RGB_frame(:,:,2,f)=RGB_frame(:,:,2,f)+abs(min(min(RGB_frame(:,:,2,f))));
 end
 if min(min(RGB_frame(:,:,3,f)))<0
 RGB_frame(:,:,3,f)=RGB_frame(:,:,3,f)+abs(min(min(RGB_frame(:,:,3,f))));
 end
 RGB_frame(:,:,1,f)=RGB_frame(:,:,1,f)*(1/max(max(RGB_frame(:,:,1,f))));
 RGB_frame(:,:,2,f)=RGB_frame(:,:,2,f)*(1/max(max(RGB_frame(:,:,2,f))));
 RGB_frame(:,:,3,f)=RGB_frame(:,:,3,f)*(1/max(max(RGB_frame(:,:,3,f))));
end

