Localization and Cutting-plane Methods

- idea of localization methods
- bisection on \mathbb{R}
- center of gravity algorithm
- analytic center cutting-plane method

Prof. S. Boyd, EE392o, Stanford University
Localization

- \(f : \mathbb{R}^n \to \mathbb{R} \) convex (and for now, differentiable)
- **problem:** minimize \(f \)
- **oracle model:** for any \(x \) we can evaluate \(f \) and \(\nabla f(x) \) (at some cost)

from \(f(x) \geq f(x_0) + \nabla f(x_0)^T (x - x_0) \) we conclude

\[
\nabla f(x_0)^T (x - x_0) \geq 0 \quad \implies \quad f(x) \geq f(x_0)
\]

i.e., all points in halfspace \(\nabla f(x_0)^T (x - x_0) \geq 0 \) are **worse** than \(x_0 \)
level curves of f

\[\nabla f(x_0) \]

\[\nabla f(x_0)^T(x - x_0) \geq 0 \]

- by evaluating ∇f we rule out a halfspace in our search for x^*:

\[x^* \in \{ x \mid \nabla f(x_0)^T(x - x_0) \leq 0 \} \]

- **idea:** get one bit of info (on location of x^*) by evaluating ∇f

- for nondifferentiable f, can replace $\nabla f(x_0)$ with any subgradient $g \in \partial f(x_0)$
suppose we have evaluated $\nabla f(x_1), \ldots, \nabla f(x_k)$
then we know $x^* \in \{x \mid \nabla f(x_i)^T(x - x_i) \leq 0\}$
on the basis of $\nabla f(x_1), \ldots, \nabla f(x_k)$, we have localized x^* to a polyhedron
question: what is a ‘good’ point x_{k+1} at which to evaluate ∇f?
Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

1. after iteration $k - 1$ we know $x^* \in \mathcal{P}_{k-1}$:

$$\mathcal{P}_{k-1} = \{ x \mid \nabla f(x^{(i)})^T (x - x^{(i)}) \leq 0, \ i = 1, \ldots, k - 1 \}$$

2. evaluate $\nabla f(x^{(k)})$ (or $g \in \partial f(x^{(k)})$) for some $x^{(k)} \in \mathcal{P}_{k-1}$

3. $\mathcal{P}_k := \mathcal{P}_{k-1} \cap \{ x \mid \nabla f(x^{(k)})^T (x - x^{(k)}) \leq 0 \}$
P_{k-1}

$\nabla f(x^{(k)})$

$x^{(k)}$

P_k

$\nabla f(x^{(k)})$

$x^{(k)}$

P_k gives our uncertainty of x^* at iteration k

want to pick $x^{(k)}$ so that P_{k+1} is as small as possible

clearly want $x^{(k)}$ near center of $C^{(k)}$
Example: bisection on \mathbb{R}

- $f : \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P}_k is interval
- obvious choice: $x^{(k+1)} := \text{midpoint}(\mathcal{P}_k)$

\begin{center}
\begin{tcolorbox}
\textbf{bisection algorithm}
\\
given interval $C = [l, u]$ containing x^*
repeat
\begin{enumerate}
 \item $x := (l + u)/2$
 \item evaluate $f'(x)$
 \item if $f'(x) < 0$, $l := x$; else $u := x$
\end{enumerate}
\end{tcolorbox}
\end{center}
\[x^{(k+1)} \]
\[\text{length}(\mathcal{P}_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = (1/2)\text{length}(\mathcal{P}_k) \]

and so \(\text{length}(\mathcal{P}_k) = 2^{-k}\text{length}(\mathcal{P}_0)\)

interpretation:

- \(\text{length}(\mathcal{P}_k)\) measures our uncertainty in \(x^*\)
- uncertainty is halved at each iteration; get exactly one bit of info about \(x^*\) per iteration
- \# steps required for uncertainty (in \(x^*\)) \(\leq \epsilon\):
 \[
 \log_2 \frac{\text{length}(\mathcal{P}_0)}{\epsilon} = \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}
 \]
question:

• can bisection be extended to \mathbb{R}^n?

• or is it special since \mathbb{R} is linear ordering?
Center of gravity algorithm

take $x^{(k+1)} = \text{CG}(P_k)$ (center of gravity)

$$\text{CG}(P_k) = \frac{\int_{P_k} x \, dx}{\int_{P_k} dx}$$

Theorem. if $C \subseteq \mathbb{R}^n$ convex, $x_{cg} = \text{CG}(C)$, $g \neq 0$,

$$\text{vol}\left(C \cap \{x \mid g^T(x - x_{cg}) \leq 0\}\right) \leq (1 - 1/e) \text{vol}(C') \approx 0.63 \, \text{vol}(C')$$

(independent of dimension n)

hence in CG algorithm, $\text{vol}(P_k) \leq 0.63^k \, \text{vol}(P_0)$
• \(\text{vol}(\mathcal{P}_k)^{1/n} \) measures uncertainty (in \(x^* \)) at iteration \(k \)

• uncertainty reduced at least by \(0.63^{1/n} \) each iteration

• from this can prove \(f(x^{(k)}) \rightarrow f(x^*) \) (later)

• max. \# steps required for uncertainty \(\leq \epsilon \):

\[
1.51n \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}
\]

(cf. bisection on \(\mathbb{R} \))
advantages of CG-method

- guaranteed convergence

- number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

- finding $x^{(k+1)} = \text{CG}(\mathcal{P}_k)$ is harder than original problem

- \mathcal{P}_k becomes more complex as k increases
 (removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)
Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P} = \{ z \mid a_i^T z \preceq b_i, \ i = 1, \ldots, m \}$ is

$$AC(\mathcal{P}) = \arg\min_z - \sum_{i=1}^m \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton’s method)
Outer ellipsoid from analytic center

• let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \preceq b_i, \ i = 1, \ldots, m\}$

• let H^* be Hessian of barrier at x^*,

$$H^* = -\nabla^2 \sum_{i=1}^m \log(b_i - a_i^T z) \bigg|_{z=x^*} = \sum_{i=1}^m \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}$$

• then, $\mathcal{P} \subseteq \mathcal{E} = \{z \mid (z - x^*)^T H^*(z - x^*) \leq m^2\}$ (not hard to show)
Lower bound in ACCPM

let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$

a lower bound on optimal value p^* is

$$p^* \geq \inf_{z \in \mathcal{E}^{(k)}} \left(f(x^{(k)}) + g^{(k)T}(z - x^{(k)}) \right)$$

$$= f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)} - 1} g^{(k)}$$

(m_k is number of inequalities in \mathcal{P}_k)

gives simple stopping criterion $\sqrt{g^{(k)T} H^{(k)} - 1} g^{(k)} \leq \epsilon / m_k$
Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and best lower bound

best function value so far: $u_k = \min_{i=1,\ldots,k} f(x^{(k)})$

best lower bound so far: $l_k = \max_{i=1,\ldots,k} f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)} - 1} g^{(k)}$

can stop when $u_k - l_k \leq \epsilon$
Basic ACCPM

given polyhedron \mathcal{P} containing x^*

repeat
1. compute x^*, the analytic center of \mathcal{P}, and H^*
2. compute $f(x^*)$ and $g \in \partial f(x^*)$
3. $u := \min\{u, f(x^*)\}$
 \[l := \max\{l, f(x^*) - m \sqrt{g^T H^*^{-1} g}\} \]
4. add inequality $g^T(z - x^*) \leq 0$ to \mathcal{P}

until $u - l < \epsilon$

here m is number of inequalities in \mathcal{P}
Dropping constraints

add an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses

schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking
Dropping constraints in ACCPM

\(x^* \) is AC of \(\mathcal{P} = \{ x \mid a_i^T x \leq b_i, \; i = 1, \ldots, m \} \), \(H^* \) is barrier Hessian at \(x^* \)

Define (ir)relevance measure \(\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^* a_i}} \)

- \(\eta_i/m \) is normalized distance from hyperplane \(a_i^T x = b_i \) to outer ellipsoid
- If \(\eta_i \geq m \), then constraint \(a_i^T x \leq b_i \) is redundant
common ACCPM constraint dropping schemes:

- drop all constraints with $\eta_i \geq m$ (guaranteed to not change \mathcal{P})

- drop constraints in order of irrelevance, keeping constant number, usually $3n - 5n$
Example

PWL objective, $n = 10$ variables, $m = 100$ terms
simple ACCPM: $f(x^{(k)})$ and lower bound $f(x^{(k)}) - m \sqrt{g^{(k)T}H^{(k)} - 1} g^{(k)}$
simple ACCPM: u_k (best objective value) and l_k (best lower bound)
ACCPM with constraint dropping

\[u_k - p^* \]
\[u_k - l_k \]

\[k \]

... constraint dropping actually \textbf{improves} convergence (!)
ACCPM with constraint dropping

number of inequalities in \mathcal{P}:

Prof. S. Boyd, EE392o, Stanford University
Handling inequality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

same idea: maintain polyhedron \(P^{(k)} \) that contains \(x^* \)

at each \(x \), need oracle to give cutting-plane that separates \(x \) from \(x^* \), i.e., \(g \neq 0 \) with

\[
g^T(x^* - x) \leq 0
\]
Cutting-plane oracle for problem with inequalities

case 1: \(x^{(k)}\) feasible, i.e., \(f_i(x^{(k)}) \leq 0, i = 1, \ldots, m\)

- take cutting plane \(g = \nabla f_0(x^{(k)})\) (or \(g \in \partial f_0(x^{(k)})\))
- rules out halfspace of points with larger function value than current point

\[g \leq 0 \quad \Rightarrow \quad x \text{ infeasible}\]

\[\Rightarrow \quad f_j(x) > 0 \quad \Rightarrow \quad x \text{ infeasible, so take } g = \nabla f_j(x^{(k)}) \quad (\text{or } g \in \partial f_j(x^{(k)}))\]

\[g \leq 0 \quad \Rightarrow \quad x \text{ infeasible}\]

- rules out halfspace of infeasible points

case 2: \(x^{(k)}\) infeasible, say, \(f_j(x^{(k)}) > 0;\)

- then \(\nabla f_j(x^{(k)})^T(x - x^{(k)}) \geq 0 \quad \Rightarrow \quad f_j(x) > 0 \quad \Rightarrow \quad x \text{ infeasible, so take } g = \nabla f_j(x^{(k)}) \quad (\text{or } g \in \partial f_j(x^{(k)}))\)
Stopping criterion

if $x^{(k)}$ is feasible, we have a lower bound on p^* as before:

$$
p^* \geq f_0(x^{(k)}) - m_k \sqrt{\nabla f_0(x^{(k)})^T H^{(k)} - 1 \nabla f_0(x^{(k)})}
$$

if $x^{(k)}$ is infeasible, we have for all $x \in \mathcal{E}^{(k)}$ (outer ellipsoid)

$$
f_j(x) \geq f_j(x^{(k)}) + \nabla f_j(x^{(k)})^T (x - x^{(k)})
$$

$$
\geq f_j(x^{(k)}) + \inf_{x \in \mathcal{E}^{(k)}} \nabla f_j(x^{(k)})^T (x - x^{(k)})
$$

$$
= f_j(x^{(k)}) - m_k \sqrt{\nabla f_j(x^{(k)})^T H^{(k)} - 1 \nabla f_j(x^{(k)})}
$$
hence, problem is infeasible if for some j,

$$f_j(x^{(k)}) - m_k \sqrt{\nabla f_j(x^{(k)})^T H^{(k)} - 1 \nabla f_j(x^{(k)})} > 0$$

stopping criteria:

- if $x^{(k)}$ is feasible and $m_k \sqrt{\nabla f_0(x^{(k)})^T H^{(k)} - 1 \nabla f_0(x^{(k)})} \leq \epsilon$ ($x^{(k)}$ is ϵ-suboptimal)

- if $f_j(x^{(k)}) - m_k \sqrt{\nabla f_j(x^{(k)})^T H^{(k)} - 1 \nabla f_j(x^{(k)})} > 0$ (problem is infeasible)