Subgradients

- subgradients and quasigradients
- subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Basic inequality

recall basic inequality for convex differentiable f:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

- first-order approximation of f at \boldsymbol{x} is global underestimator
- $(\nabla f(x), -1)$ supports epi f at (x, f(x))

What if f is not differentiable?

Subgradient of a function

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x) \quad \text{for all } y$$

 $(\iff (g, -1) \text{ supports epi } f \text{ at } (x, f(x)))$ $f(x_1) + g_1^T(x - x_1)$ $f(x_2) + g_2^T(x - x_2)$ $f(x_2) + g_3^T(x - x_2)$ $f(x_2) + g_3^T(x - x_2)$

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

- $\bullet\,$ subgradient gives affine global underestimator of $f\,$
- if f is convex, it has at least one subgradient at every point in relint dom f
- if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

Example

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

Subdifferential

set of all subgradients of f at x is called the ${\bf subdifferential}$ of f at x, written $\partial f(x)$

- $\partial f(x)$ is a closed convex set
- $\partial f(x)$ nonempty (if f convex, and finite near x)
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$
- in many applications, don't need complete $\partial f(x);$ it is sufficient to find one $g\in \partial f(x)$

example:
$$f(x) = |x|$$

Calculus of subgradients

assumption: all functions are finite near x

- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- scaling: $\partial(\alpha f) = \alpha \partial f$ (if $\alpha > 0$)
- addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$ (RHS is addition of sets)
- affine transformation of variables: if g(x) = f(Ax + b), then $\partial g(x) = A^T \partial f(Ax + b)$
- pointwise maximum: if $f = \max_{i=1,...,m} f_i$, then

$$\partial f(x) = \mathbf{Co} \bigcup \{ \partial f_i(x) \mid f_i(x) = f(x) \},\$$

 $\it i.e.,$ convex hull of union of subdifferentials of 'active' functions at x

special case: if f_i differentiable

$$\partial f(x) = \mathbf{Co}\{\nabla f_i(x) \mid f_i(x) = f(x)\}$$

example: $f(x) = ||x||_1 = \max\{s^T x \mid s_i \in \{-1, 1\}\}$

Pointwise supremum

 $\text{if } f = \sup_{\alpha \in \mathcal{A}} f_{\alpha},$

$$\operatorname{cl}\operatorname{Co}\bigcup\{\partial f_{\beta}(x) \mid f_{\beta}(x) = f(x)\} \subseteq \partial f(x)$$

(usually get equality, but requires some technical conditions to hold, *e.g.*, \mathcal{A} compact, f_{α} cts in x and α)

roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active function

in any case, if $f_{\beta}(x) = f(x)$, then $\partial f_{\beta}(x) \subseteq \partial f(x)$

example

$$f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2 = 1} y^T A(x) y$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$, $A_i \in S^k$

- f is pointwise supremum of $g_y(x) = y^T A(x)y$ over $||y||_2 = 1$
- g_y is affine in x, with $\nabla g_y(x) = (y^T A_1 y, \dots, y^T A_n y)$
- hence, $\partial f(x) = \mathbf{Co} \{ \nabla g_y \mid A(x)y = \lambda_{\max}(A(x))y, \|y\|_2 = 1 \}$ (not hard to verify)

to find **one** subgradient at x, can choose **any** unit eigenvector y associated with $\lambda_{\max}(A(x))$; then

$$(y^T A_1 y, \dots, y^T A_n y) \in \partial f(x)$$

Minimization

define g(y) as the optimal value of

minimize
$$f_0(x)$$

subject to $f_i(x) \le y_i, i = 1, \dots, m$

```
(f_i convex; variable x)
```

with λ^{\star} an optimal dual variable, we have

$$g(z) \ge g(y) - \sum_{i=1}^{m} \lambda_i^* (z_i - y_i)$$

i.e., $-\lambda^{\star}$ is a subgradient of g at y

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \ge f(x) + g^T(y - x)$

hence $f(y) \leq f(x) \Longrightarrow g^T(y-x) \leq 0$

- f differentiable at x_0 : $\nabla f(x_0)$ is normal to the sublevel set $\{x \mid f(x) \leq f(x_0)\}$
- f nondifferentiable at x_0 : subgradient defines a supporting hyperplane to sublevel set through x_0

Quasigradients

 $g \neq 0$ is a **quasigradient** of f at x if

$$g^T(y-x) \ge 0 \implies f(y) \ge f(x)$$

holds for all y

quasigradients at x form a cone

example:

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad (\mathbf{dom} \ f = \{x | c^T x + d > 0\})$$

 $g = a - f(x_0)c$ is a quasigradient at x_0

proof: for $c^T x + d > 0$:

$$a^T(x - x_0) \ge f(x_0)c^T(x - x_0) \Longrightarrow f(x) \ge f(x_0)$$

example: degree of $a_1 + a_2t + \cdots + a_nt^{n-1}$

$$f(a) = \min\{i \mid a_{i+2} = \dots = a_n = 0\}$$

 $g = \operatorname{sign}(a_{k+1})e_{k+1}$ (with k = f(a)) is a quasigradient at $a \neq 0$

proof:

$$g^{T}(b-a) = \operatorname{sign}(a_{k+1})b_{k+1} - |a_{k+1}| \ge 0$$

implies $b_{k+1} \neq 0$

Optimality conditions — unconstrained

recall for f convex, differentiable,

$$f(x^{\star}) = \inf_{x} f(x) \Longleftrightarrow 0 = \nabla f(x^{\star})$$

generalization to nondifferentiable convex f:

$$f(x^{\star}) = \inf_{x} f(x) \Longleftrightarrow 0 \in \partial f(x^{\star})$$

proof. by definition (!)

$$f(y) \ge f(x^*) + 0^T (y - x^*)$$
 for all $y \iff 0 \in \partial f(x^*)$

. . . seems trivial but isn't

Example: piecewise linear minimization

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

 $x^* \text{ minimizes } f \iff 0 \in \partial f(x^*) = \mathbf{Co}\{a_i \mid a_i^T x^* + b_i = f(x^*)\}$
 $\iff \text{there is a } \lambda \text{ with}$

$$\lambda \succeq 0, \qquad \mathbf{1}^T \lambda = 1, \qquad \sum_{i=1}^m \lambda_i a_i = 0$$

where $\lambda_i = 0$ if $a_i^T x^\star + b_i < f(x^\star)$

. . . but these are the KKT conditions for the epigraph form

minimize
$$t$$

subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

with dual

maximize
$$b^T \lambda$$

subject to $\lambda \succeq 0$, $A^T \lambda = 0$, $\mathbf{1}^T \lambda = 1$

Optimality conditions — constrained

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$

we assume

- f_i convex, defined on \mathbf{R}^n (hence subdifferentiable)
- strict feasibility (Slater's condition)

 x^{\star} is primal optimal (λ^{\star} is dual optimal) iff

$$f_i(x^*) \le 0, \quad \lambda_i^* \ge 0$$
$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)$$
$$\lambda_i^* f_i(x^*) = 0$$

 \ldots generalizes KKT for nondifferentiable f_i

Directional derivative

directional derivative of f at x in the direction δx is

$$f'(x; \delta x) \stackrel{\Delta}{=} \lim_{h \searrow 0} \frac{f(x + h\delta x) - f(x)}{h}$$

can be $+\infty$ or $-\infty$

- f convex, finite near $x \Longrightarrow f'(x; \delta x)$ exists
- f differentiable at x if and only if, for some $g (= \nabla f(x))$ and all δx , $f'(x; \delta x) = g^T \delta x$ (*i.e.*, $f'(x; \delta x)$ is a linear function of δx)

Directional derivative and subdifferential

general formula for convex f: $f'(x; \delta x) = \sup_{g \in \partial f(x)} g^T \delta x$

Descent directions

 δx is a **descent direction** for f at x if $f'(x; \delta x) < 0$ for differentiable f, $\delta x = -\nabla f(x)$ is always a descent direction (except when it is zero)

warning: for nondifferentiable (convex) functions, $\delta x = -g$, with $g \in \partial f(x)$, need not be descent direction

example: $f(x) = |x_1| + 2|x_2|$

Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), $g \in \partial f(x)$, then for small t > 0,

$$||x - tg - z||_2 < ||x - z||_2$$

thus -g is descent direction for $||x - z||_2$, for any z with f(z) < f(x) (e.g., x^*)

negative subgradient is descent direction for distance to optimal point

proof:
$$||x - tg - z||_2^2 = ||x - z||_2^2 - 2tg^T(x - z) + t^2 ||g||_2^2$$

 $\leq ||x - z||_2^2 - 2t(f(x) - f(z)) + t^2 ||g||_2^2$

Descent directions and optimality

fact: for f convex, finite near x, either

- $0 \in \partial f(x)$ (in which case x minimizes f), or
- \bullet there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define $\delta x_{sd} = - \underset{z \in \partial f(x)}{\operatorname{argmin}} ||z||$

if $\delta x_{sd} = 0$, then $0 \in \partial f(x)$, so x is optimal; otherwise $f'(x; \delta x_{sd}) = -\left(\inf_{z \in \partial f(x)} ||z||\right)^2 < 0$, so δx_{sd} is a descent direction

idea extends to constrained case (feasible descent direction)