Subgradients

- subgradients and quasigradients
- subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Prof. S. Boyd, EE392o, Stanford University
Basic inequality

recall basic inequality for convex differentiable f:

$$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$

- first-order approximation of f at x is global underestimator
- $(\nabla f(x), -1)$ supports $\text{epi } f$ at $(x, f(x))$

What if f is not differentiable?
Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

$$f(y) \geq f(x) + g^T(y - x) \quad \text{for all } y$$

$(\iff (g, -1) \text{ supports } \text{epi } f \text{ at } (x, f(x)))$

g_2, g_3 are subgradients at x_2; g_1 is a subgradient at x_1
• subgradient gives affine global underestimator of f

• if f is convex, it has at least one subgradient at every point in $\text{relint dom } f$

• if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x
Example

\[f = \max\{f_1, f_2\}, \text{ with } f_1, f_2 \text{ convex and differentiable} \]

- \(f_1(x_0) > f_2(x_0) \): unique subgradient \(g = \nabla f_1(x_0) \)
- \(f_2(x_0) > f_1(x_0) \): unique subgradient \(g = \nabla f_2(x_0) \)
- \(f_1(x_0) = f_2(x_0) \): subgradients form a line segment \([\nabla f_1(x_0), \nabla f_2(x_0)]\)
Subdifferential

set of all subgradients of f at x is called the subdifferential of f at x, written $\partial f(x)$

- $\partial f(x)$ is a closed convex set
- $\partial f(x)$ nonempty (if f convex, and finite near x)
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$
- in many applications, don’t need complete $\partial f(x)$; it is sufficient to find one $g \in \partial f(x)$
example: \(f(x) = |x| \)
Calculus of subgradients

assumption: all functions are finite near x

- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- **scaling**: $\partial(\alpha f) = \alpha \partial f$ (if $\alpha > 0$)
- **addition**: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$ (RHS is addition of sets)
- **affine transformation of variables**: if $g(x) = f(Ax + b)$, then $\partial g(x) = A^T \partial f(Ax + b)$
- **pointwise maximum**: if $f = \max_{i=1,...,m} f_i$, then

\[
\partial f(x) = \text{Co} \bigcup \{\partial f_i(x) \mid f_i(x) = f(x)\},
\]

i.e., convex hull of union of subdifferentials of ‘active’ functions at x
special case: if f_i differentiable

$$\partial f(x) = \text{Co}\{\nabla f_i(x) \mid f_i(x) = f(x)\}$$

example: $f(x) = \|x\|_1 = \max\{s^T x \mid s_i \in \{-1, 1\}\}$

\[
\begin{align*}
\partial f(x) & \text{ at } x = (0, 0) \\
\text{at } x = (1, 0) & \\
\text{at } x = (1, 1) & \end{align*}
\]
Pointwise supremum

if $f = \sup_{\alpha \in A} f_\alpha$,

$$\text{cl Co} \bigcup \{ \partial f_\beta(x) \mid f_\beta(x) = f(x) \} \subseteq \partial f(x)$$

(usually get equality, but requires some technical conditions to hold, e.g., A compact, f_α cts in x and α)

roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active function

in any case, if $f_\beta(x) = f(x)$, then $\partial f_\beta(x) \subseteq \partial f(x)$
example

\[f(x) = \lambda_{\text{max}}(A(x)) = \sup_{\|y\|_2 = 1} y^T A(x) y \]

where \(A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n, A_i \in S^k \)

- \(f \) is pointwise supremum of \(g_y(x) = y^T A(x) y \) over \(\|y\|_2 = 1 \)
- \(g_y \) is affine in \(x \), with \(\nabla g_y(x) = (y^T A_1 y, \ldots, y^T A_n y) \)
- hence, \(\partial f(x) = \text{Co} \{ \nabla g_y \mid A(x)y = \lambda_{\text{max}}(A(x))y, \|y\|_2 = 1 \} \)
 (not hard to verify)

To find one subgradient at \(x \), can choose any unit eigenvector \(y \) associated with \(\lambda_{\text{max}}(A(x)) \); then

\[(y^T A_1 y, \ldots, y^T A_n y) \in \partial f(x) \]
Minimization

define $g(y)$ as the optimal value of

$$\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq y_i, \quad i = 1, \ldots, m
\end{align*}$$

(f_i convex; variable x)

with λ^* an optimal dual variable, we have

$$g(z) \geq g(y) - \sum_{i=1}^{m} \lambda_i^*(z_i - y_i)$$

i.e., $-\lambda^*$ is a subgradient of g at y
Subgradients and sublevel sets

g is a subgradient at x means $f(y) \geq f(x) + g^T(y - x)$

hence $f(y) \leq f(x) \implies g^T(y - x) \leq 0$
• f differentiable at x_0: $\nabla f(x_0)$ is normal to the sublevel set $\{x \mid f(x) \leq f(x_0)\}$

• f nondifferentiable at x_0: subgradient defines a supporting hyperplane to sublevel set through x_0
Quasigradients

$g \neq 0$ is a quasigradient of f at x if

$$g^T(y - x) \geq 0 \implies f(y) \geq f(x)$$

holds for all y

quasigradients at x form a cone
example:

\[f(x) = \frac{a^T x + b}{c^T x + d}, \quad (\text{dom } f = \{x | c^T x + d > 0\}) \]

\[g = a - f(x_0)c \text{ is a quasigradient at } x_0 \]

proof: for \(c^T x + d > 0 \):

\[a^T (x - x_0) \geq f(x_0)c^T (x - x_0) \implies f(x) \geq f(x_0) \]
Example: degree of $a_1 + a_2 t + \cdots + a_n t^{n-1}$

\[f(a) = \min\{i \mid a_{i+2} = \cdots = a_n = 0\} \]

$g = \text{sign}(a_{k+1}) e_{k+1}$ (with $k = f(a)$) is a quasigradient at $a \neq 0$

Proof:

\[g^T (b - a) = \text{sign}(a_{k+1}) b_{k+1} - |a_{k+1}| \geq 0 \]

implies $b_{k+1} \neq 0$
Optimality conditions — unconstrained

recall for f convex, differentiable,

$$f(x^*) = \inf_x f(x) \iff 0 = \nabla f(x^*)$$

generalization to nondifferentiable convex f:

$$f(x^*) = \inf_x f(x) \iff 0 \in \partial f(x^*)$$
proof. by definition (!)

\[f(y) \geq f(x^*) + 0^T(y - x^*) \text{ for all } y \iff 0 \in \partial f(x^*) \]

... seems trivial but isn’t
Example: piecewise linear minimization

\[f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i) \]

\(x^\ast \) minimizes \(f \Longleftrightarrow 0 \in \partial f(x^\ast) = \text{Co}\{a_i \mid a_i^T x^\ast + b_i = f(x^\ast)\} \)

\(\Longleftrightarrow \) there is a \(\lambda \) with

\[\lambda \succeq 0, \quad 1^T \lambda = 1, \quad \sum_{i=1}^m \lambda_i a_i = 0 \]

where \(\lambda_i = 0 \) if \(a_i^T x^\ast + b_i < f(x^\ast) \)
... but these are the KKT conditions for the epigraph form

minimize \(t \)
subject to \(a_i^T x + b_i \leq t, \quad i = 1, \ldots, m \)

with dual

maximize \(b^T \lambda \)
subject to \(\lambda \succeq 0, \quad A^T \lambda = 0, \quad 1^T \lambda = 1 \)
Optimality conditions — constrained

minimize $f_0(x)$
subject to $f_i(x) \leq 0, \ i = 1, \ldots, m$

we assume

- f_i convex, defined on \mathbb{R}^n (hence subdifferentiable)
- strict feasibility (Slater’s condition)

x^* is primal optimal (λ^* is dual optimal) iff

$$f_i(x^*) \leq 0, \ \lambda_i^* \geq 0$$
$$0 \in \partial f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* \partial f_i(x^*)$$
$$\lambda_i^* f_i(x^*) = 0$$

... generalizes KKT for nondifferentiable f_i
Directional derivative

directional derivative of f at x in the direction δx is

$$f'(x; \delta x) \triangleq \lim_{h \searrow 0} \frac{f(x + h\delta x) - f(x)}{h}$$

can be $+\infty$ or $-\infty$

- f convex, finite near $x \implies f'(x; \delta x)$ exists

- f differentiable at x if and only if, for some $g (= \nabla f(x))$ and all δx, $f'(x; \delta x) = g^T \delta x$ (i.e., $f'(x; \delta x)$ is a linear function of δx)
Directional derivative and subdifferential

general formula for convex f: $f'(x; \delta x) = \sup_{g \in \partial f(x)} \langle g, \delta x \rangle$
Descent directions

δx is a **descent direction** for f at x if $f'(x; \delta x) < 0$

for differentiable f, $\delta x = -\nabla f(x)$ is always a descent direction (except when it is zero)

warning: for nondifferentiable (convex) functions, $\delta x = -g$, with $g \in \partial f(x)$, need not be descent direction

example: $f(x) = |x_1| + 2|x_2|$
Subgradients and distance to sublevel sets

if f is convex, $f(z) < f(x)$, $g \in \partial f(x)$, then for small $t > 0$,

$$
\|x - tg - z\|_2^2 < \|x - z\|_2^2
$$

thus $-g$ is descent direction for $\|x - z\|_2$, for any z with $f(z) < f(x)$ (e.g., x^*)

negative subgradient is descent direction for distance to optimal point

proof:

$$
\|x - tg - z\|_2^2 = \|x - z\|_2^2 - 2tg^T(x - z) + t^2\|g\|_2^2
\leq \|x - z\|_2^2 - 2t(f(x) - f(z)) + t^2\|g\|_2^2
$$
Descent directions and optimality

fact: for f convex, finite near x, either

- $0 \in \partial f(x)$ (in which case x minimizes f), or

- there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define $\delta x_{sd} = - \arg\min_{z \in \partial f(x)} \| z \|

if $\delta x_{sd} = 0$, then $0 \in \partial f(x)$, so x is optimal; otherwise

$f'(x; \delta x_{sd}) = - \left(\inf_{z \in \partial f(x)} \| z \| \right)^2 < 0$, so δx_{sd} is a descent direction
idea extends to constrained case (feasible descent direction)