
Subgradients

• subgradients and quasigradients

• subgradient calculus

• optimality conditions via subgradients

• directional derivatives
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Basic inequality

recall basic inequality for convex differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x)

• first-order approximation of f at x is global underestimator

• (∇f(x),−1) supports epi f at (x, f(x))

What if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x− x1)

f(x2) + gT
2 (x− x2)

f(x2) + gT
3 (x− x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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• subgradient gives affine global underestimator of f

• if f is convex, it has at least one subgradient at every point in
relint dom f

• if f is convex and differentiable, ∇f(x) is a subgradient of f at x
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Example

f = max{f1, f2}, with f1, f2 convex and differentiable

PSfrag replacements

x0

f1(x)
f2(x)

f(x)

• f1(x0) > f2(x0): unique subgradient g = ∇f1(x0)

• f2(x0) > f1(x0): unique subgradient g = ∇f2(x0)

• f1(x0) = f2(x0): subgradients form a line segment [∇f1(x0),∇f2(x0)]

Prof. S. Boyd, EE392o, Stanford University 4



Subdifferential

set of all subgradients of f at x is called the subdifferential of f at x,
written ∂f(x)

• ∂f(x) is a closed convex set

• ∂f(x) nonempty (if f convex, and finite near x)

• ∂f(x) = {∇f(x)} if f is differentiable at x

• if ∂f(x) = {g}, then f is differentiable at x and g = ∇f(x)

• in many applications, don’t need complete ∂f(x); it is sufficient to find
one g ∈ ∂f(x)
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example: f(x) = |x|

PSfrag replacements f(x) = |x| ∂f(x)

x

x

1

−1
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Calculus of subgradients

assumption: all functions are finite near x

• ∂f(x) = {∇f(x)} if f is differentiable at x

• scaling: ∂(αf) = α∂f (if α > 0)

• addition: ∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of sets)

• affine transformation of variables: if g(x) = f(Ax+ b), then
∂g(x) = AT∂f(Ax+ b)

• pointwise maximum: if f = max
i=1,...,m

fi, then

∂f(x) = Co
⋃

{∂fi(x) | fi(x) = f(x)},

i.e., convex hull of union of subdifferentials of ‘active’ functions at x
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special case: if fi differentiable

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}

example: f(x) = ‖x‖1 = max{sTx | si ∈ {−1, 1}}

PSfrag replacements

1

1

−1

−1

∂f(x) at x = (0, 0)

1

1

−1

at x = (1, 0)

(1,1)

at x = (1, 1)
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Pointwise supremum

if f = sup
α∈A

fα,

clCo
⋃

{∂fβ(x) | fβ(x) = f(x)} ⊆ ∂f(x)

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, fα cts in x and α)

roughly speaking, ∂f(x) is closure of convex hull of union of
subdifferentials of active function

in any case, if fβ(x) = f(x), then ∂fβ(x) ⊆ ∂f(x)
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example

f(x) = λmax(A(x)) = sup
‖y‖2=1

yTA(x)y

where A(x) = A0 + x1A1 + · · ·+ xnAn, Ai ∈ S
k

• f is pointwise supremum of gy(x) = yTA(x)y over ‖y‖2 = 1

• gy is affine in x, with ∇gy(x) = (yTA1y, . . . , y
TAny)

• hence, ∂f(x) = Co {∇gy | A(x)y = λmax(A(x))y, ‖y‖2 = 1}
(not hard to verify)

to find one subgradient at x, can choose any unit eigenvector y associated
with λmax(A(x)); then

(yTA1y, . . . , y
TAny) ∈ ∂f(x)
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Minimization

define g(y) as the optimal value of

minimize f0(x)
subject to fi(x) ≤ yi, i = 1, . . . ,m

(fi convex; variable x)

with λ? an optimal dual variable, we have

g(z) ≥ g(y)−
m
∑

i=1

λ?i (zi − yi)

i.e., −λ? is a subgradient of g at y
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Subgradients and sublevel sets

g is a subgradient at x means f(y) ≥ f(x) + gT (y − x)

hence f(y) ≤ f(x) =⇒ gT (y − x) ≤ 0

PSfrag replacements
f(x) ≤ f(x0)

x0

g ∈ ∂f(x0)

x1

∇f(x1)
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• f differentiable at x0: ∇f(x0) is normal to the sublevel set
{x | f(x) ≤ f(x0)}

• f nondifferentiable at x0: subgradient defines a supporting hyperplane
to sublevel set through x0

Prof. S. Boyd, EE392o, Stanford University 13



Quasigradients

g 6= 0 is a quasigradient of f at x if

gT (y − x) ≥ 0 =⇒ f(y) ≥ f(x)

holds for all y

PSfrag replacements

g
x

f(y) ≤ f(x)

quasigradients at x form a cone
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example:

f(x) =
aTx+ b

cTx+ d
, (dom f = {x|cTx+ d > 0})

g = a− f(x0)c is a quasigradient at x0

proof: for cTx+ d > 0:

aT (x− x0) ≥ f(x0)c
T (x− x0) =⇒ f(x) ≥ f(x0)
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example: degree of a1 + a2t+ · · ·+ ant
n−1

f(a) = min{i | ai+2 = · · · = an = 0}

g = sign(ak+1)ek+1 (with k = f(a)) is a quasigradient at a 6= 0

proof:
gT (b− a) = sign(ak+1)bk+1 − |ak+1| ≥ 0

implies bk+1 6= 0
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Optimality conditions — unconstrained

recall for f convex, differentiable,

f(x?) = inf
x
f(x)⇐⇒ 0 = ∇f(x?)

generalization to nondifferentiable convex f :

f(x?) = inf
x
f(x)⇐⇒ 0 ∈ ∂f(x?)
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PSfrag replacements

x

f(x)

x0

0 ∈ ∂f(x0)

proof. by definition (!)

f(y) ≥ f(x?) + 0T (y − x?) for all y ⇐⇒ 0 ∈ ∂f(x?)

. . . seems trivial but isn’t
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Example: piecewise linear minimization

f(x) = maxi=1,...,m(aTi x+ bi)

x? minimizes f ⇐⇒ 0 ∈ ∂f(x?) = Co{ai | a
T
i x

? + bi = f(x?)}

⇐⇒ there is a λ with

λ º 0, 1Tλ = 1,

m
∑

i=1

λiai = 0

where λi = 0 if aTi x
? + bi < f(x?)

Prof. S. Boyd, EE392o, Stanford University 19



. . . but these are the KKT conditions for the epigraph form

minimize t

subject to aTi x+ bi ≤ t, i = 1, . . . ,m

with dual

maximize bTλ

subject to λ º 0, ATλ = 0, 1Tλ = 1
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Optimality conditions — constrained

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

we assume

• fi convex, defined on R
n (hence subdifferentiable)

• strict feasibility (Slater’s condition)

x? is primal optimal (λ? is dual optimal) iff

fi(x
?) ≤ 0, λ?i ≥ 0

0 ∈ ∂f0(x
?) +

∑m

i=1 λ
?
i∂fi(x

?)

λ?i fi(x
?) = 0

. . . generalizes KKT for nondifferentiable fi
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Directional derivative

directional derivative of f at x in the direction δx is

f ′(x; δx)
∆
= lim

h↘0

f(x+ hδx)− f(x)

h

can be +∞ or −∞

• f convex, finite near x =⇒ f ′(x; δx) exists

• f differentiable at x if and only if, for some g (= ∇f(x)) and all δx,
f ′(x; δx) = gTδx (i.e., f ′(x; δx) is a linear function of δx)
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Directional derivative and subdifferential

general formula for convex f : f ′(x; δx) = sup
g∈∂f(x)

gTδx

PSfrag replacements

δx

∂f(x)
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Descent directions

δx is a descent direction for f at x if f ′(x; δx) < 0

for differentiable f , δx = −∇f(x) is always a descent direction (except
when it is zero)

warning: for nondifferentiable (convex) functions, δx = −g, with
g ∈ ∂f(x), need not be descent direction

example: f(x) = |x1|+ 2|x2|PSfrag replacements
x1

x2

g
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Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), g ∈ ∂f(x), then for small t > 0,

‖x− tg − z‖2 < ‖x− z‖2

thus −g is descent direction for ‖x− z‖2, for any z with f(z) < f(x)
(e.g., x?)

negative subgradient is descent direction for distance to optimal point

proof: ‖x− tg − z‖22 = ‖x− z‖22 − 2tgT (x− z) + t2‖g‖22

≤ ‖x− z‖22 − 2t(f(x)− f(z)) + t2‖g‖22
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Descent directions and optimality

fact: for f convex, finite near x, either

• 0 ∈ ∂f(x) (in which case x minimizes f), or

• there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define δxsd = − argmin
z∈∂f(x)

‖z‖

if δxsd = 0, then 0 ∈ ∂f(x), so x is optimal; otherwise

f ′(x; δxsd) = −
(

infz∈∂f(x) ‖z‖
)2
< 0, so δxsd is a descent direction
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PSfrag replacements

∂f(x)

xsd

idea extends to constrained case (feasible descent direction)
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