Subgradients

subgradients and quasigradients
subgradient calculus
optimality conditions via subgradients

directional derivatives
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Basic inequality

recall basic inequality for convex differentiable f:

fy) > f(z) + V() (y — )

e first-order approximation of f at x is global underestimator

e (Vf(x),—1) supports epi f at (z, f(x))

What if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if

fy) > f(x)+g'(y—x) forally

(<= (g,—1) supports epi f at (z, f(z)))
f(x)

f(x1) + 91T<96 — £U1)
\ f(z2) + g, (z — z2)
f(fE2) + g5 (z — x2)

551 . 282
g2, g3 are subgradients at x5; g1 is a subgradient at x4
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e subgradient gives affine global underestimator of f

e if f is convex, it has at least one subgradient at every point in
relint dom f

e if f is convex and differentiable, V f(x) is a subgradient of f at x
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Example

f =max{fi, fo}, with f1, fo convex and differentiable

fa(xg): unique subgradient g = V f1(x)
fi(xo): unique subgradient g = V fa(x0)
o fi1(zo) = fa(xo): subgradients form a line segment [V f1(z¢), V fa(z)]
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Subdifferential

set of all subgradients of f at x is called the subdifferential of f at z,
written O f(x)

e Of(x) is a closed convex set

e Of(x) nonempty (if f convex, and finite near x)

o Of(x) ={Vf(x)}if fis differentiable at x

o if 0f(x) ={g}, then f is differentiable at = and g = V f(x)

e in many applications, don’'t need complete 0f(x); it is sufficient to find
one g € 0f(x)
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example: f(z) = |x|

f(z) = |z| 0f(x)
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Calculus of subgradients
assumption: all functions are finite near x
e Of(x) ={Vf(x)}if fis differentiable at =
e scaling: d(af) = adf (if a > 0)
e addition: O(f; + f2) = df1 + 0f2 (RHS is addition of sets)

e affine transformation of variables: if g(x) = f(Ax +b), then
dg(x) = ATOf(Az +b)

e pointwise maximum: if f = max f;, then
1=1,..., m

0f(x) = Col|_J{0fi(x) | fi(x) = f(x)},

1.e., convex hull of union of subdifferentials of ‘active’ functions at «
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special case: if f; differentiable

Of(x) = Co{Vfi(x) | filz) = f(x)}

example: f(z) = ||z|; = max{s'z |s; € {-1,1}}

1 1] (1)

—1

Of(x) at x = (0,0) at z = (1,0) at z = (1,1)
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Pointwise supremum

if f = sup fa,
ac A

el Co| J{0f5(@) | fo(x) = f(2)} C ()

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, f, ctsin z and «)

roughly speaking, df(x) is closure of convex hull of union of
subdifferentials of active function

in any case, if fg(z) = f(x), then 0fs(x) C Of(x)
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example
f(2) = Amax(A(x)) = sup y' A(x)y

lyll2=1
where A(x) = Ag + 2141+ -+ x,A,, A; € g*

e f is pointwise supremum of g,(z) = y? A(z)y over ||y|2 =1
e g, is affine in x, with Vg,(z) = (y" A1y, ..., y" Any)

e hence, 0f(x) = Co{Vy, | A(x)y = Amax(A(2))y, |lyll2 =1}
(not hard to verify)

to find one subgradient at x, can choose any unit eigenvector y associated
with Apax(A(x)); then

(y" Ary, ..., y" Apy) € 0f(x)
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Minimization
define g(y) as the optimal value of

minimize  fo(z)
subject to  fi(z) <y, 1=1,..

(f; convex; variable x)

with A* an optimal dual variable, we have

9(z) > gly) = > Nz — i)
i=1
i.e., —A\* Is a subgradient of g at y
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Subgradients and sublevel sets

g is a subgradient at x means f(y) > f(x) + g’ (y — 2)

hence f(y) < f(z) = ¢'(y—2) <0

g € 0f(xo)

Vf(z1)
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e f differentiable at xo: V f(xg) is normal to the sublevel set

{z| f(z) < flzo)}

e f nondifferentiable at xg: subgradient defines a supporting hyperplane
to sublevel set through xg

Prof. S. Boyd, EE3920, Stanford University

13



Quasigradients

g # 0 is a quasigradient of f at x if

g y—z)>0 = f(y) > f(z)

holds for all y

) < f@) 7

quasigradients at x form a cone
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example:

_aT:C+b
T+ d

f(x) (dom f = {z|c'z +d > 0})

g =a— f(xo)c is a quasigradient at x

proof: for cl'z +d > 0:

a' (x —x0) > f(zo)c' (z — x0) = f(z) > f(0)
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example: degree of a; + ast + -+ + an,t™ !
f(a) =min{i | aj o =---=a, =0}

g = sign(ags1)ex+1 (with k = f(a)) is a quasigradient at a # 0

proof:
QT(b —a) = sign(ax+1)bk+1 — |ag41| >0
implies bg41 # 0
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Optimality conditions — unconstrained

recall for f convex, differentiable,
f(x®) =inf f(z) <= 0=V f(z¥)
generalization to nondifferentiable convex f:

fla*) = inf f(z) <= 0 € Of (&)
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0 € df(xo)

o

proof. by definition (!)
fly) > f@)+ 01 (y—a*) forally < 0¢€If(z*)

... seems trivial but isn’t
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Example: piecewise linear minimization

f(x) = max;—1, m(al z + b;)
r* minimizes f <= 0 € df(z*) = Co{a; | alx* + b; = f(x*)}

<= there is a \ with

A =0, 1T\ =1, > Aia; =0
=1

where \; = 0 if al 2* + b; < f(z¥)
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.. . but these are the KKT conditions for the epigraph form

minimize t
subject to alx+b; <t, i=1,...,m

with dual

maximize b1\
subject to A\ > 0, ATX =0, 17 =1
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Optimality conditions — constrained
minimize  fo(z)
subject to  fi(z) <0, i=1,...,m
we assume

e f; convex, defined on R"™ (hence subdifferentiable)

e strict feasibility (Slater’'s condition)

x* is primal optimal (\* is dual optimal) iff

fi(z*) <0, AF >0
0 e (9f0(£U*) + Z:i1 )‘:afz(x*)
Arfi(z*) =0

... generalizes KKT for nondifferentiable f;
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Directional derivative

directional derivative of f at x in the direction dx is

sy A J(@ A+ hox) — f(x)

can be 400 or —o0

e f convex, finite near 1 = f/(x;dx) exists

e f differentiable at x if and only if, for some g (= V f(x)) and all iz,

f'(xz;62) = gtox (i.e., f'(x;0x) is a linear function of dx)
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Directional derivative and subdifferential

general formula for convex f: f'(z;0z) = sup g¢'dx
geof(x)

~
~ CU
~
~
~
~

Of(x

Prof. S. Boyd, EE3920, Stanford University



Descent directions

dx is a descent direction for f at x if f/(x;0x) <0

for differentiable f, dx = —V f(x) is always a descent direction (except

when it is zero)

warning: for nondifferentiable (convex) functions, dx
g € 0f(x), need not be descent direction

= —g, with

X2

example: f(x) = |x1| + 2|z2] ST
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Subgradients and distance to sublevel sets

if fis convex, f(z) < f(x), g € f(x), then for small ¢t > 0,

lz —tg = zll2 < [lz = 2|2

thus —g is descent direction for ||x — z||2, for any z with f(z) < f(x)

(e.g., x*)
negative subgradient is descent direction for distance to optimal point

proof: [lz —tg —z[l3 = [lo—z[l3 - 2tg" (x — 2) + *|lg]3
< lo = zll3 = 26(f(2) = £(2) +£2gl3
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Descent directions and optimality

fact: for f convex, finite near x, either

e 0 € df(x) (in which case = minimizes f), or

e there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define §rsy = — argmin || z||
2€0f(x)

if 0xsq =0, then 0 € 9f(x), so x is optimal; otherwise
f/(@; 0xsa) = — (inf.cop(a) Hz||)2 < 0, so dxgq is a descent direction
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Of ()

idea extends to constrained case (feasible descent direction)
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