Subgradients

- subgradients and quasigradients
- subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Basic inequality

recall basic inequality for convex differentiable $f\colon$

$$
f(y) \ge f(x) + \nabla f(x)^T (y - x)
$$

- $\bullet\,$ first-order approximation of f at x is global underestimator
- $\bullet \,\, (\nabla f(x),-1)$ supports $\bf epi \, f$ at $(x,f(x))$

What if f is not differentiable?

Subgradient of ^a function

g is a subgradient of f (not necessarily convex) at x if

$$
f(y) \ge f(x) + g^T(y - x) \quad \text{for all } y
$$

 $(\iff (g, -1)$ supports epi f at $(x, f(x)))$

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

- $\bullet\,$ subgradient gives affine global underestimator of f
- \bullet if f is convex, it has at least one subgradient at every point in ${\bf relint}\, {\bf dom}\, f$
- $\bullet\,$ if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

Example

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

- \bullet $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- \bullet $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- \bullet $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

Subdifferential

set of all subgradients of f at x is called the ${\bf subdifferential}$ of f at $x,$ written $\partial f(x)$

- \bullet $\partial f(x)$ is a closed convex set
- \bullet $\partial f(x)$ nonempty (if f convex, and finite near $x)$
- \bullet $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- $\bullet\,$ if $\partial f(x)=\{g\}$, then f is differentiable at x and $g=\nabla f(x)$
- $\bullet\,$ in many applications, don't need complete $\partial f(x)$; it is sufficient to find one $g\in\partial f(x)$

$$
example: f(x) = |x|
$$

Calculus of subgradients

assumption: all functions are finite near x

- \bullet $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- scaling: $\partial(\alpha f)=\alpha\partial f$ (if $\alpha>0)$
- \bullet addition: $\partial (f_1+f_2)=\partial f_1+\partial f_2$ (RHS is addition of sets)
- $\bullet\,$ affine transformation of variables: if $g(x) = f(Ax + b)$, then $\partial g(x) = A^T \partial f(Ax + b)$
- \bullet pointwise maximum: if $f = \max\limits_{i=1,...,m} f_i$, then

$$
\partial f(x) = \mathbf{Co} \bigcup \{ \partial f_i(x) \mid f_i(x) = f(x) \},
$$

i.e., convex hull of union of subdifferentials of 'active' functions at x

special case: if f_i differentiable

$$
\partial f(x) = \mathbf{Co}\{\nabla f_i(x) \mid f_i(x) = f(x)\}
$$

example: $f(x) = ||x||_1 = \max\{s^T x \mid s_i \in \{-1, 1\}\}\$

Pointwise supremum

if $f=\sup f_\alpha$, $\alpha \in A$

$$
\mathbf{cl}\,\mathbf{Co}\bigcup\{\partial f_{\beta}(x)\mid f_{\beta}(x)=f(x)\}\subseteq\partial f(x)
$$

(usually get equality, but requires some technical conditions to hold, $e.g.,$ A compact, f_{α} cts in x and α)

roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active function

in any case, if $f_\beta(x) = f(x)$, then $\partial f_\beta(x) \subseteq \partial f(x)$

example

$$
f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2 = 1} y^T A(x) y
$$

where $A(x)=A_0+x_1A_1+\cdots+x_nA_n, \, A_i\in {\bf S}^k$

- \bulletf is pointwise supremum of $g_y(x)=y^TA(x)y$ over $\|y\|_2=1$
- \bullet g_{y} is affine in x , with $\nabla g_{y}(x)=(y^{T}A_{1}y,\ldots,y^{T}A_{n}y)$
- $\bullet\,$ hence, $\partial f(x) = \mathbf{Co}\left\{\nabla g_y\,\mid A(x)y = \lambda_{\mathsf{max}}(A(x))y,\; \|y\|_2 = 1\right\}$ (not hard to verify)

to find ${\bf one}$ subgradient at x , can choose ${\bf any}$ unit eigenvector y associated with $\lambda_{\max}(A(x))$; then

$$
(y^T A_1 y, \dots, y^T A_n y) \in \partial f(x)
$$

Minimization

define $g(y)$ as the optimal value of

$$
\begin{array}{ll}\text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \le y_i, \ \ i = 1, \dots, m \end{array}
$$

$$
(f_i \text{ convex}; \text{variable } x)
$$

with λ^\star an optimal dual variable, we have

$$
g(z) \ge g(y) - \sum_{i=1}^{m} \lambda_i^*(z_i - y_i)
$$

i.e., $-\lambda^*$ is a subgradient of g at y

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \ge f(x) + g^{T}(y - x)$

hence $f(y)\leq f(x) \Longrightarrow g^T(y-x)\leq 0$

- \bullet f differentiable at $x_0\colon\thinspace \nabla f(x_0)$ is normal to the sublevel set ${x | f(x) \le f(x_0)}$
- \bullet f nondifferentiable at x_0 : subgradient defines a supporting hyperplane to sublevel set through $x_{\rm 0}$

Quasigradients

 $g \neq 0$ is a **quasigradient** of f at x if

$$
g^T(y - x) \ge 0 \implies f(y) \ge f(x)
$$

holds for all y

quasigradients at x form a cone

example:

$$
f(x) = \frac{a^T x + b}{c^T x + d}, \quad (\text{dom } f = \{x | c^T x + d > 0\})
$$

 $g = a - f(x_0)c$ is a quasigradient at x_0

proof: for $c^T x + d > 0$:

$$
a^T(x - x_0) \ge f(x_0)c^T(x - x_0) \Longrightarrow f(x) \ge f(x_0)
$$

example: degree of $a_1 + a_2t + \cdots + a_nt^{n-1}$

$$
f(a) = \min\{i \mid a_{i+2} = \dots = a_n = 0\}
$$

 $g = \text{sign}(a_{k+1})e_{k+1}$ (with $k = f(a)$) is a quasigradient at $a \neq 0$

proof:

$$
g^T(b-a) = \text{sign}(a_{k+1})b_{k+1} - |a_{k+1}| \ge 0
$$

implies $b_{k+1} \neq 0$

Optimality conditions — unconstrained

recall for f convex, differentiable,

$$
f(x^*) = \inf_x f(x) \Longleftrightarrow 0 = \nabla f(x^*)
$$

generalization to nondifferentiable convex f :

$$
f(x^*) = \inf_x f(x) \iff 0 \in \partial f(x^*)
$$

proof. by definition (!)

$$
f(y) \ge f(x^{\star}) + 0^{T}(y - x^{\star}) \text{ for all } y \iff 0 \in \partial f(x^{\star})
$$

. . . seems trivial but isn't

Example: piecewise linear minimization

$$
f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)
$$

$$
x^*
$$
 minimizes $f \iff 0 \in \partial f(x^*) = \mathbf{Co}\{a_i \mid a_i^T x^* + b_i = f(x^*)\}$

$$
\iff \text{there is a } \lambda \text{ with}
$$

$$
\lambda \geq 0,
$$
 $\mathbf{1}^T \lambda = 1,$ $\sum_{i=1}^m \lambda_i a_i = 0$

where $\lambda_i=0$ if $a_i^Tx^\star+b_i < f(x^\star)$

. . . but these are the KKT conditions for the epigraph form

$$
\begin{array}{ll}\text{minimize} & t\\ \text{subject to} & a_i^T x + b_i \le t, \quad i = 1, \dots, m \end{array}
$$

with dual

$$
\begin{array}{ll}\text{maximize} & b^T\lambda\\ \text{subject to} & \lambda \succeq 0, \qquad A^T\lambda = 0, \qquad \mathbf{1}^T\lambda = 1 \end{array}
$$

Optimality conditions — constrained

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0, i = 1,...,m$

we assume

- \bullet f_i convex, defined on \textbf{R}^n (hence subdifferentiable)
- strict feasibility (Slater's condition)

 x^\star is primal optimal $(\lambda^\star$ is dual optimal) iff

$$
f_i(x^*) \le 0, \quad \lambda_i^* \ge 0
$$

$$
0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)
$$

$$
\lambda_i^* f_i(x^*) = 0
$$

 \ldots generalizes KKT for nondifferentiable f_i

Directional derivative

directional derivative of f at x in the direction δx is

$$
f'(x; \delta x) \stackrel{\Delta}{=} \lim_{h \searrow 0} \frac{f(x + h\delta x) - f(x)}{h}
$$

can be $+\infty$ or $-\infty$

- \bullet f convex, finite near $x\Longrightarrow f'(x;\delta x)$ exists
- \bullet f differentiable at x if and only if, for some g $(=\nabla f(x))$ and all $\delta x,$ $f'(x; \delta x) = g^T \delta x$ (*i.e.*, $f'(x; \delta x)$ is a linear function of δx)

Directional derivative and subdifferential

general formula for convex $f\colon\thinspace f'(x;\delta x) = -\sup$ $g{\in}\partial f(x)$ $g^T\delta x$

Descent directions

 δx is a $\bold{descent}$ direction for f at x if $f'(x; \delta x) < 0$ for differentiable $f,~\delta x = -\nabla f(x)$ is always a descent direction (except when it is zero)

warning: for nondifferentiable (convex) functions, $\delta x = -g$, with $g \in \partial f(x)$, need not be descent direction

example: $f(x) = |x_1| + 2|x_2|$

Subgradients and distance to sublevel sets

if f is convex, $f(z) < f(x)$, $g \in \partial f(x)$, then for small $t > 0$,

$$
||x - tg - z||_2 < ||x - z||_2
$$

thus $-g$ is descent direction for $\|x - z\|_2$, for $\mathbf{any}\;z$ with $f(z) < f(x)$ $(e.g., x^{\star})$

negative subgradient is descent direction for distance to optimal point

proof:
$$
||x - tg - z||_2^2 = ||x - z||_2^2 - 2tg^T(x - z) + t^2||g||_2^2
$$

\n $\le ||x - z||_2^2 - 2t(f(x) - f(z)) + t^2||g||_2^2$

Descent directions and optimality

fact: for f convex, finite near x , either

- $\bullet\,\,\,0\in\partial f(x)$ (in which case x minimizes f), or
- $\bullet\,$ there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define $\delta x_{\mathsf{sd}} = -\operatorname{argmin} \| z \|$ $z \in \partial f(x)$

if $\delta x_{\rm sd}=0$, then $0\in\partial f(x)$, so x is optimal; otherwise $f'(x; \delta x_{sd}) = -(\inf_{z \in \partial f(x)} ||z||)^2 < 0$, so δx_{sd} is a descent direction

idea extends to constrained case (feasible descent direction)