Lossy compression

Goal: Lower the bit-rate R by introducing some (acceptable) distortion D of the signal X.

Lossless coding

$D=0$

$R \geq H(X)$
Topics in lossy compression

- Information theoretical bounds for lossy compression: *rate distortion theory*
 - R-D function for memoryless Gaussian sources with mean-squared error distortion criterion
 - R-D function for Gaussian sources with memory
 - R-D function for images

- Practical lossy compression techniques: *quantization*
 - Scalar quantization and vector quantization
 - Quantizer design for fixed length codes
 - Quantizer design for variable length codes
 - Embedded quantizers
Rate distortion theory

- Rate distortion theory calculates the minimum transmission bit-rate R for a required picture quality

$$R_{dD} \leq \text{Bitrate for distortion } d \leq D$$

- Results of rate distortion theory are obtained without consideration of a specific coding method
Distortion

- Symbol (signal, image . . .) x sent, \hat{x} received
- Single-letter distortion measure:
 \[\rho(x, \hat{x}) \geq 0 \]
 \[\rho(x, \hat{x}) = 0 \text{ for } x = \hat{x} \]
- Average distortion:
 \[d(X, \hat{X}) = E\left\{ \rho(X, \hat{X}) \right\} = \sum_x \sum_{\hat{x}} f_{X,\hat{X}}(x, \hat{x}) \rho(x, \hat{x}) \]
- Distortion criterion:
 \[d(X, \hat{X}) \leq \hat{D} \]
 Maximum permissible average distortion
Mutual information

- "Mutual information" is the average information that random variables X and Y convey about each other
 - Reduction in uncertainty about X, if Y is observed
 - Reduction in uncertainty about Y, if X is observed

\[
I(X;Y) = H(X) - H(X \mid Y) = H(Y) - H(Y \mid X)
\]

\[
= \sum_x \sum_y f_{x,y}(x, y) \log_2 \frac{f_{x,y}(x, y)}{f_x(x) f_y(y)}
\]

- Properties

\[
0 \leq I(X;Y) = I(Y;X)
\]

\[
I(X;Y) \leq H(X)
\]

\[
I(X;Y) \leq H(Y)
\]
Rate distortion function

- **Definition:**
 \[R(D) = \inf_{f_{\hat{X}|X} : d(X, \hat{X}) \leq D} \{ I(X; \hat{X}) \} \]

- **Shannon’s Source Coding Theorem (and converse):**
 For a given maximum average distortion \(D \), the rate distortion function \(R(D) \) is the (achievable) lower bound for the transmission bit-rate.

- \(R(D) \) is continuous, monotonically decreasing for \(R > 0 \) and convex

- Equivalently use distortion-rate function \(D(R) \)
Extension to continuous random variables

- **Differential entropy**
 \[
 h(X) = -E\{\log_2 f_X(X)\} = -\int f_X(x) \log_2 f_X(x) \, dx
 \]

- **Differential conditional entropy**
 \[
 h(X \mid Y) = -E\{\log_2 f_{X \mid Y}(X, Y)\} = -\int \int f_{X,Y}(x,y) \log_2 f_{X \mid Y}(x,y) \, dx \, dy
 \]

- **Mutual information**
 \[
 I(X;Y) = h(X) - h(X \mid Y) = h(Y) - h(Y \mid X)
 \]

- **Rate distortion function**
 \[
 R(D) = \inf_{f_{\hat{X} \mid X} : d(X, \hat{X}) \leq D} \{I(X;\hat{X})\}
 \]
Shannon lower bound

- It can be shown that $h(X - \hat{X} | \hat{X}) = h(X | \hat{X})$

- Thus

$$R(D) = \inf_{d \leq D} \{ h(X) - h(X | \hat{X}) \}$$

$$= h(X) - \sup_{d \leq D} \{ h(X | \hat{X}) \}$$

$$= h(X) - \sup_{d \leq D} \{ h(X - \hat{X} | \hat{X}) \}$$

- Ideally, the source coder would introduce i.i.d. errors $X - \hat{X}$ that are statistically independent from the reconstructed signal \hat{X} (not always possible!).

- Shannon lower bound:

$$R(D) \geq h(X) - \sup_{d \leq D} h(X - \hat{X})$$
Shannon lower bound (cont.)

- Mean squared error distortion measure: Gaussian PDF possesses largest entropy for given variance

\[
R(D) \geq h(X) - \sup_{d \leq D} h(X - \hat{X})
\]

\[
= h(X) - \frac{1}{2} \log_2 2\pi e D
\]

- Equivalently

\[
D(R) \geq \frac{1}{2\pi e} 2^{2h(X)} 2^{-2R}
\]

- Distortion reduction by 6 dB requires 1 bit/sample
$R(D)$ function for a memoryless Gaussian source and MSE distortion

- Gaussian source, variance σ^2
- Mean squared error

$$d = E \{(X - \hat{X})^2\} \leq D$$

- Rule of thumb: 6 dB \approx 1 bit
- $R(D)$ for non-Gaussian sources with the same variance σ^2 is always below this Gaussian $R(D)$ curve.

$$R(D) = \frac{1}{2} \log_2 \left(\frac{\sigma^2}{D} \right)$$

$$D(R) = \sigma^2 2^{-2R}$$

$$SNR = 10 \log_{10} \left(\frac{\sigma^2}{D} \right) [dB]$$
$R(D)$ for Gaussian source with memory

- Stationary, band-limited, jointly Gaussian source with power spectral density $\Phi_{xx}(\omega)$
- Mean squared error distortion $d = E\{(X - \hat{X})^2\} \leq D$
- $R(D)$ function in parametric form

\[
D(\theta) = \frac{1}{2\pi} \int_{\omega} \min \left\{ \theta, \Phi_{xx}(\omega) \right\} d\omega
\]

\[
R(\theta) = \frac{1}{2\pi} \int_{\omega} \max \left\{ 0, \frac{1}{2} \log \frac{\Phi_{xx}(\omega)}{\theta} \right\} d\omega
\]

- $R(D)$ for non-Gaussian sources with the same power spectral density is always lower.
$R(D)$ for Gaussian source with memory

The preserved spectrum $\Phi_{xx}(\omega)$ is shown with blue color. The reconstruction error spectrum is shown with yellow color. There is no signal transmitted for certain frequencies θ. The white noise θ is indicated in the diagram.
Rate distortion function for images

- **Signal model:** Gaussian source with acf

\[
R_{ss}[n_x, n_y] = \exp\left(-\omega_0 \sqrt{n_x^2 + n_y^2}\right)
\]

- **Power spectral density** (neglecting aliasing):

\[
\Phi_{ss}(\omega_x, \omega_y) = \frac{2\pi}{\omega_0^2} \left(1 + \frac{\omega_x^2 + \omega_y^2}{\omega_0^2}\right)^{-\frac{3}{2}}
\]

\[\omega_0 = -\ln(0.93)\]

correlation between adjacent pixels

\[
\log(\Phi_{ss}(\omega_x, \omega_y))
\]

6 dB
Mean squared error criterion: \[D = E\{(S - \hat{S})^2\} \]

After numerical integration:

- Memoryless Gaussian
- Increasing
- Decreasing
- \(\omega_0 \)
- \(~2.3\) bits
- Gaussian with memory
Gaussian scale mixture modeling

- Images are not Gaussian
 - Local pixel differences or prediction errors possess Laplacian pdf
 - Transform coefficients (DCT, DWT, ...) possess Laplacian pdf

- Gaussian scale mixture model

\[
\Phi_{ss}(\omega_x, \omega_y) \quad \sqrt{V} \quad v \cdot \Phi_{ss}(\omega_x, \omega_y)
\]

- Exponentially distributed variance \(V \), mean \(E[V]=\sigma^2 \)

\[
p_V(v) = \begin{cases}
\frac{1}{\sigma^2} e^{-v/\sigma^2} &; v \geq 0 \\
0 &; \text{else}
\end{cases}
\]
Gaussian scale mixture modeling

- Infinite mixture of Gaussians with zero mean and exponential variance distribution yields a Laplacian!
- Elegant explanation of ubiquitous Laplacian pdfs in images

\[
p_x(x) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi} \nu} \cdot e^{-x^2/2\nu} \cdot \frac{1}{\sigma^2} e^{-\nu/\sigma^2} d\nu
\]

\[
= \sqrt{\frac{1}{2\sigma^2}} \cdot e^{-\sqrt{2} \cdot |x|/\sigma}
\]
Rate reduction due to source splitting

- Same distortion $D \leq \nu$ for each sub-source (implies high-rate assumption)

- Rate-distortion function, if σ^2 is known

$$R(D) = \int_0^\infty \frac{1}{2} \log_2 \left(\frac{\nu}{D} \right) \frac{1}{\sigma^2} e^{-\nu/\sigma^2} d\nu = -\frac{\gamma}{2 \ln 2} + \frac{1}{2} \log_2 \left(\frac{\sigma^2}{D} \right)$$

Euler's constant $\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln n \approx 0.577216$

- Rate reduction relative to Gaussian with variance σ^2

$$\frac{\gamma}{2 \ln 2} \approx 0.416373 \text{ bits}$$
Rate distortion function for images

- Memoryless Gaussian
- Gaussian scale mixture with memory
- Gaussian with memory

Rate [bits/sample] vs. SNR [dB]
- Memoryless Gaussian: ~2.3 bits
- Gaussian with memory: ~0.4 bits
Summary: rate distortion theory

- Rate-distortion theory: minimum transmission bit-rate for given distortion
- Shannon Lower Bound assumes statistical independence between distortion and reconstructed signal
- $R(D)$ for memoryless Gaussian source and MSE: 6 dB/bit
- $R(D)$ for Gaussian source with memory and MSE: encode spectral components independently, introduce white noise, suppress small spectral components
- Theoretical gain ~2.3 bits/sample by exploiting spatial redundancy in the video signal
- Additional theoretical source splitting gain of ~0.4 bits/sample with Gaussian mixture model
Reading

- Taubman, Marcellin, Chapter 3.1, “Rate-Distortion Theory”