3D Video Coding

- 3D Cinema
- Stereo Video
- Disparity
- Autostereoscopic Displays
- 3D Video Coding for Stereo Displays
- 3D Video Coding for Autostereoscopic Displays
The Development of 3D Cinema

Number of 3D screens

Source: Flying Eye, 2011
3D Cinema: Stereo Video

- anaglyph
- polarized
- shutter

2 Views
3D on 2D Displays
Why Glasses?

- Need to project a different image into each eye
- Glasses provide control over what each eye sees

Positive Parallax

Display
Autostereoscopic Displays

- Field of view is repeated
- Size of field of view is governed by number of views:
 Size: 1.50 m \ Number of Views: 50
- Problem for acquisition and transmission
Two Cameras and Interpolation

- Continuous reproduction of all intermediate views
- Weighted averaging of left and right view

Increase left weight when view is moved to the left.
Disparity:
\[D = f \cdot \frac{X}{Z} \]
Acquisition: Plenoptic Sampling

Disparity: \[D = f \cdot \frac{X}{Z} \]
Acquisition: Plenoptic Sampling

\[
D = f \cdot \frac{X}{Z}
\]
Depth Maps
3DV System A: Creating Depth Maps at the Sender

- Standard Stereo Camera
- Stereo Correction
- Generic Depth Estimation
- Depth-Based Stereo Encoder

Meta Data

Transmission, Storage, etc.

- Depth-Based Stereo Decoder
- Service-Compatible Stereo
- Virtual View Generation by DIBR

Conventional 2D-TV Set
Glasses-Based 3D-Displays
Adaptation to Auto-Stereoscopic Multi-View 3D-Display DIBR
Rendering of Virtual Stereo Pair with Adapted Baseline by DIBR
3DV System B: Creating Depth Maps at the Receiver

Meta Data

Transmission, Storage, etc.

Service-Compatible Stereo Encoder

Standard Stereo Camera

Service-Compatible Stereo Decoder

Display Specific Depth Estimation

Virtual View Generation by DIBR

Service-Compatible Stereo

Stereo Correction

Conventional 2D-TV Set

Glasses-Based 3D-Displays

Adaptation to Auto-Stereoscopic Multi-View 3D-Display DIBR

Rendering of Virtual Stereo Pair with Adapted Baseline by DIBR
Introduce dependency of video signal from depth signal?
Coding of Dependent Views

base view

2D video coder

dependent view

video coder for dependent views

view N

video coder for dependent views

multiplexer

bitstream
Disparity-Compensated Prediction

- Use previously decoded pictures as additional reference pictures.
- Only construction of reference picture lists is modified.

Reconstructed pictures of the same view

Reconstructed picture of a different view in same access unit

Current picture

DCP

MCP

$R = 0$

$R = 2$

$R = 4$

$R = 1$
Inter-View Motion Parameter Prediction

Basic idea:
• Motion is similar in different views
• Create an efficient motion vector predictor

Uses an estimate of the current depth map:
• Not yet coded
• How to derive it?

- reference picture in reference view
- reference picture in current view
- derived motion vector for current block
- current block
- location x
- current picture in current view
- current picture in reference view

- sample location x in reference view
- disparity vector (given by depth estimate d at location x)
- reference sample location x_R
- motion vector for reference block that covers the reference sample location
Residual prediction:

- Predict residual of a current block using a coded residual block in a reference view
- Determined disparity using the estimated depth maps (same depth as for inter-view motion parameter prediction)
- Disparity-compensated prediction of the current residual
- Bilinear filtering for sub-sample interpolation

Signalling:

- Transmit residual prediction flag for motion-compensated blocks

convert depth value to disparity vector
Coding of Depth Maps

- **base view**
 - HEVC conforming video coder
 - depth map coder

- **dependent view**
 - video coder for dependent views
 - depth map coder for dependent views

- **view N**
 - video coder for dependent views
 - depth map coder for dependent views

- multiplexer

- bitstream
Depth Map Coding: Simplified Video Codec

- Integer-pel motion vector accuracy
 - Motion compensation with full-sample accuracy
 - No interpolation filter
 - Coding of motion vector differences with full-sample accuracy
- Disabling of in-loop filtering
- Disparity-compensated prediction
 - For dependent views
 - Same concept as for video pictures
Depth Modelling Modes

Depth map properties:

• Sharp edges representing object borders
• Large areas of slowly varying values representing object areas
• Edges in depth maps are correlated with edges in video pictures

Coding ideas specific to depth maps:

• Representation of depth edges
• Partition block into two regions with constant sample values
• Prediction based on co-located texture block
• Optional transform coding of residual
Intra Partitioning Modes

Non-rectangular block partitions

- Approximating the signal of a depth block by a model that partitions the area into two non-rectangular regions
- Each region is represented by a constant value

(even several parts)
Motion Parameter Inheritance

- Reference picture
- Current picture

Inheritance of partitioning and motion data

Transmission of new partitioning and motion data
How to Control All of This?

Introduce dependency of video signal from depth signal?
General Encoder Control

- Video picture encoding
 - No changes to HM encoder control
 - Decisions based on Lagrangian costs $D + \lambda \cdot R$
 - Motion estimation and mode decision
 - Quantization
 - Fast motion search and fast mode decision of HM
 - Optionally: Depth-aware coder control for dependent views

- Depth Maps
 - Basically same encoder control as for video pictures
 - For mode decision: View synthesis optimization
 - Measure distortion in synthesized views (instead of in depth domain)
 - Includes rendering capabilities in encoder
Distortion measure: Synthesized view distortion change (SVDC)

- Difference in distortion due to depth coding with a particular mode
- Additive distortion measure
- Reference: Original view or synthesized view obtained with original data

Depth map:
- Coded data in encoded blocks
- Original data in not yet coded blocks
- Coded data in current block

SVDC: used as distortion measure in RDO

synthesized view distortion (SVD)
Depth-Aware Encoder Control

- Regions in one view can be rendered given the data for other views
- Encode such regions only once with high quality (in base view)
- Render these regions after decoding

Only encode occluded parts of the second view

Encoder only technique
Coding Efficiency - Stereo

- PSNR in synthesized views against synthesized pictures with original data
- Calculate Bjøntegaard Delta (BD) PSNR relative to simulcast

![Graph showing BD PSNR vs virtual camera position for different scenes.](image)
Summary

- 3D is perceived by multiple clues
- Glasses provide control over what each eye sees: stereo video
- Efficient stereo codec: disparity compensation, motion and residual prediction
- Efficient multiview plus depth codec: depth prediction using video contours, inheritance of motion vectors
- Need for transmission of depth data not clear