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1. Introduction

The theme of this course is multiuser detection, in which the basic problem is
to consider how to detect when multiple users share a single channel or interfere
with each other. In this lecture, the simple case of a binary symmetric channel
(BSC) is considered, which serves as a very simple model for understanding the
problem in more general situations.

Some results from information theory [1] will be useful for understanding the
potential bene…ts of coding and multiuser detection for a situation with interfering
users. In particular, the motivation for computing the capacity of the channel is
Shannon’s Noisy Channel Coding Theorem, which says that there exist error-
control codes such that information can be transmitted across this channel at any
rate less than or equal to the capacity, with arbitrarily low probability of error.
(Conversely, any class of codes which brings the probability of error arbitrarily
close to zero must have rate less than the capacity.) In other words, for a …xed
amount of noise, the capacity describes the maximum amount of data which can
be transmitted along that channel per unit time. Alternately, this relationship
can be described by …xing the rate of the code, and looking for the maximum
amount of noise that an optimally designed code can tolerate. This is known as
the Shannon limit. The proof of Shannon’s theorem relies on a random coding
argument, which argues that among the codes consisting of randomly chosen
codewords, there must exist one which will have good performance, and in fact,
it is the case that as block lengths go to in…nity, a randomly chosen code will
give near-capacity performance. The problem with these random codes, however,



is the enormous complexity involved in maximum likelihood decoding of these
codes.

The theory of error-correcting codes [4] describes the construction of codes
that have structure that allows for decoding at reasonable complexities. In par-
ticular, there has been extensive use of codes such as convolutional codes and
Reed-Solomon codes (or a combination of these codes, known as concatenated
coding) that perform reasonably well for many applications. On the other hand,
there has traditionally been a gap between the performance and the theoretical
limits, due to limits on the complexity of the decoders. In the past few years,
since the discovery of turbo codes in 1993, there has been a ‡urry of exciting
experimental results and theoretical papers which give error-correcting codes and
decoding techniques which achieving performance extremely close to the Shan-
non capacity. These codes, which include turbo codes and Low Density Parity
Check (LDPC) codes, use iterative decoding techniques which involve the passing
of probabilistic information. Using these codes, which involve substantial but not
infeasible complexity, the full capacity of the channel can be achieved in the single
user case.

In the multiuser case, however, it is much more di¢cult to compute the ca-
pacity than in the single user case, and the means for achieving these capacities
are not always known. The development of decoding techniques for multiuser de-
tection which achieve capacity is an open research question that will have many
practical rami…cations.

2. Binary symmetric channel

Suppose that xi is a binary signal, and that the received signal yi is also a binary
signal which corrupted by some binary noise ni. The index i indicates that the
time of the signal, where the channel allows the transmission of data at discrete
time instants.

yi = xi © ni
It should be noted that x, y, and n belong to f0; 1g and the addition is performed
modulo 2. This channel is known as the binary symmetric channel, with the noise
n having probability p of being 1 and probability (1¡ p) of being 0.
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Figure 2.1: Binary Symmetric Channel

2.1. Capacity

The entropy H (X) =
P
p (x) log2

1
p(x)

denotes the amount of information that is
contained in the variable X, and is simply a function of the distribution p (x) on
the values that the variable x can take on. In general, the capacity of a discrete
memoryless channel (with a discrete input X and discrete output Y ) is de…ned
as the maximum of the mutual information over all possible input distributions
p(x):

C = max
p(x)

I (X ;Y )

= max
p(x)

H (Y )¡H (Y jX)

In the case of the binary symmetric channel, the capacity is

C = max
p(x)

H (Y )¡H (p)

= 1¡H (p)

where H (p) = p log 1
p
+ (1¡ p) log 1

1¡p , and the maximizing distribution on X is
the uniform distribution where it has probability 0.5 of being 0 or 1.
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Figure 2.2: Encoding and decoding

2.2. Error-correcting code

To achieve this capacity, it is necessary to use a code. It should be noted that the
capacity does not refer to a single use of the channel, but is rather an asymptotic
result as the block length of the code increases towards in…nity.

As a very simple example of an error-correcting code, consider the repetition
code in which the sequence is divided into blocks of 3 bits, and every three bits
are identical. In other words, for all i, we have

x3i = x3i+1 = x3i+2:

It is easy to see that this code encodes a single message bit every three bits, for a
coding rate of 1

3
, and this code corrects a single bit error in each block of 3 bits,

by using majority voting to determine the correct bit. If the raw bit error rate is
p and the errors occur independently, then the probability of an error in a block
is given by the part of the binomial expansion

Perror = 3p
2 (1¡ p) + p3;

corresponding to having 2 or more errors in a block.
Then suppose that the raw error rate is p = 0:15. Then this code with rate

0:33 lowers the error rate to 0:0607. On the other hand, at this error rate p = 0:15,
the capacity is 1¡H (p) = 0:3902. Shannon’s theorem then says that it is possible
to design a code (using much longer block length) that brings the error rate as
close to 0 as desired, and that it is possible to …nd such a code with rate close to
the theoretical capacity 0:39.

More generally, error-correcting codes can be constructed using a parity check
matrix P with M rows and N columns.

P ¢ x = 0
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j=1

Pijxj = 0 for all i 2 f1; :::;Mg

For example, the repetition code described above can be described using the
following parity check matrix

P =

"
1 1 0
0 1 1

#

so that the parity check equation,

P

2
64
x1
x2
x3

3
75 = 0

gives x1©x2 = 0 and x2©x3 = 0, so that x1, x2 and x3 must be equal, giving the
repetition code.

From Shannon’s theorem, it is known that choosing P randomly with rate
N¡M
N

less than capacity will give a code that gives a probability of error that
approach zero as the block length N increases. This assumes that a maximum
likelihood decoding of the code is possible—a brute force decoding would involve
comparing the received vector y with every possible codeword (there are 2N¡M of
them).

Low-density parity check (LDPC) codes [2] are error-correcting codes de…ned
by a binary parity check matrix that is sparse, meaning that it has a relatively
small number of 1’s, on the order of 3 or 4 per column. It turns out that there
exist iterative decoding methods that can decode LDPC codes with relatively low
complexity.

3. Multiuser detection

In this section, three situations involving multiple users are considered and ana-
lyzed. These scenarios turn out to be rather trivial in the case of a binary sym-
metric channel, but give some basic insight into the types of multiuser detection
problems. Considering these scenarios for other channels, such as channels with
Gaussian noise and channels with memory, will be the topic of further lectures.

The general multiuser situation can be described as follows

yi= Hxi+ni

5



Multiple access
channel

x i
A

xi
B

yi

ni

Mobile phones Base station

Broadcast channel yi
A

ni
A

yi
B

ni
Bxi

Digital TVtransmitter Digital TV receivers

Figure 3.1: Multiple access and broadcast channels

where xi, yi and ni are vectors corresponding to the transmitted signal, the re-
ceived signal and the noise at time i, respectively. The size of the vectors deter-
mines the number of transmitters and the number of receivers in this multiuser
system.

3.1. Multiple access channel

In this scenario, multiple users are trying to talk to a single receiver. An example
would be where multiple mobile wireless handsets are sending information to a
single base station.

yi =
h
1 1

i "
xAi
xBi

#
+

h
ni

i

= xAi + x
B
i + ni

A simple solution is to have the two users take turns talking. This is known as
time-division multiple access (TDMA). If each user uses half of the time, then
each user can transmit at a rate which is equal to half the capacity of the channel,
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in other words 1
2
C = 1

2
(1¡H (p)). In general, the channel can be shared at any

proportion t:

rA = tC

rB = (1¡ t)C

On the other hand, another way to divide the channel is as follows: Let user
A transmit in the following pattern, where xAi is the encoded bits for user A.

xA1 ; x
A
1 ; x

A
2 ; x

A
2 ; x

A
3 ; x

A
3

Meanwhile encode user B’s signal using the following pattern

xB1 ; 0; x
B
2 ; 0; x

B
3 ; 0; :::

Then it is possible to detect user B by adding together adjacent samples y2i+y2i+1.
Note that it is assumed that the receiver also knows the timing of the two signal,
so that the receiver can then obtain some values for xBi (which may possibly have
some noise). The receiver then applies the decoder for user B to clean up the
signal. Similarly, by looking at the instants when user B does not transmit, the
receiver is able to decode user A as well. This separation scheme can be thought of
as a code, so that this very simple example falls into the category of code-division
multiple access (CDMA).

The advantage of this code-division over time-division is in the case where user
B does not signal at all. Then user A can be better decoded, since each bit is
transmitted twice, so that there is extra protection against errors. In the time
division situations, half of the available slots of signalling would be left empty.
Generally speaking, an advantage of code division over time division is that if users
do not signal, then the other users improve their performance by automatically
utilizing the extra bandwidth.

3.2. Broadcast channel

The opposite of the multiple access channel is the broadcast channel, where a
single user transmits to two receivers. This is the situation with digital satellite
television, where the transmitter broadcasts a single message to all receivers. Since
di¤erent receivers may want to view di¤erent channels, the receivers must then
decode the signal so as to obtain the desired part of the broadcast.
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Using time division multiplexing (TDM), it is possible for the transmitter to take
turns transmitting to the two receivers, or in the case of a television broadcast,
the transmitter alternates between broadcasting two programs. Since the two
receivers have di¤erent noise levels, the capacities of the channels are di¤erent.
The trade-o¤s that can be made by using time division are shown in Figure 3.2. In
particular, time division multiplexing yields rates which are a linear combination
of the respective capacities

rA = t ¢ CA
rB = (1¡ t) ¢ CB

Notice that to make sure that the same rate is achieved by both users, the trans-
mitter should spend more time transmitting to the weaker user.

t ¢CA = (1¡ t) ¢ CB

t =
CB

CA + CB

3.3. Interference

Finally, suppose that there are two separate users, each processing its own stream
of binary data along a binary symmetric channel, and consider what happens if
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For example, imagine a home in the near future where one person is watching
television using a set-top box that takes streaming video from a web server, while
anohter person is talking on a voice-over-IP telephone. Suppose that all data to
the home is sent through the same “pipe” (which could be a cable modem, a
digital subscriber loop (DSL) or wireless), and suppose that this future system
has been very badly designed so that whenever a phone call comes in the home,
the telephone signal interferes with the video signal.

Following the discussion of the binary symmetric channel, we represent this
scenario by the highly simpli…ed (and inaccurate) model where all signals are
represented by binary data and su¤er from binary noise. First it is assumed that
the transmitted signals for user A and user B are independent, so that user A sees
user B’s signal as additive noise. Then user B has capacity CB = 1¡H

³
pB

´
as

before, but if user A only receives yA, and knows nothing about user B’s signal,
then the interference from xB makes it impossible to gain any knowledge from the
signal yA, so that the capacity CA is 0.

On the other hand, if user A has access to both yA and yB, then user A
can …rst decode user B signal from yB , and then obtain a perfect value for xB.
Then user A can cancel out this signal to remove the interference and thereby
decode xA perfectly, so with multiuser detection the User A’s capacity becomes
CA = 1¡H

³
pA

´
.
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User A knows yA 0 CB = 1¡H

³
pB

´

User A knows yA and yB CA = 1¡H
³
pA

´
CB = 1¡H

³
pB

´

It should be noted that when an analogous situation is drawn for other types
of channel, such as Gaussian noise channels, it becomes possible (under certain
assumptions) to also perform detection even when user A only knows yA. Com-
puting the capacities in multiuser situations shows a potential for increased trans-
mission rates even in the presence of severe interference. Finding low complexity
techniques to achieve capacity on interference channels is an active and promising
area of investigation.
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