EE 486 lecture 12: More on Divide, systems issues and SRT.

M. J. Flynn
(Figures used in slides 4-13 are from B. Parhami, Computer Arithmetic)

Non restoring division

- We define the partial remainder as:
 \[s^{(0)} = r \cdot s^{(i-1)} - q_i \cdot d \]

- For binary, \(r = 2 \) and \(q_i \) in \{-1,1\}
- So we end up with something like:
 \[1-1-1111-1 \]

Conversion to binary

- Shift left by 1
- Pad 1 as the new LSB
- Keep the 1 as is and replace any -1 by 0
- Complement the MSB

Proof: use \(b_j = (q_i+1)/2 \) or \(q_i = 2 \cdot b_j - 1 \)

Partial Remainder diagrams

- Show the partial remainder’s range and the quotient digit to be selected.
- Using the digit set \{-1,1\} recognizes non restore correction but each iteration has a full CPA delay.
- Using \{-1,0,1\} allows us to recognize the skip over 0 case and do a no op (Software, variable shift). Also, redundancy allows the delay of only a CSA per iteration (Hardware).

Non restoring: two views

- These are 2 Partial remainder diagrams;
 - 2 possible quotient digits (or actions)
 - 3 digits, now including the possibility of a 0 quotient digit (or no op action)
 - The 3 digit set allows a redundant representation

Partial remainder diagrams

SRT

- Sweeney, Robertson and Tocher (SRT)
- Use digit redundancy to simplify/ speed up divide.
- If we have a redundant set \{-1,0,1\} for some combination of \(s^{(0)} \) and \(d \) (PD combination) we can select either 0 or \(-1\): or 0 or 1 and still get the same result.
Radix-2 SRT

- Choose q to be 0 in [-1/2, +1/2) and 1 for P >= +1/2 and -1 for P < -1/2
- Now comparisons are with +/- 1/2 not with D.

Selecting regions

- Overlapping regions can use either digit for quotient. Want to make the selection to be easy and well as speeding up the divisor add/subtract.

Using CSAs

- By forming only a high 4b sum for P, we can select the correct action; the rest of P can be left in S+C form and returned to the next iteration thru a CSA (combined with the D multiple)

Radix-4 SRT

- Clearly, we want more than 1b per iteration
- Radix-4 gives 2b per iteration.
- There’s a big tradeoff between the redundancy in the quotient digit set and the quotient selection complexity.
- {-3,-2,-1,0,1,2,3} provides easy selection (lots of overlap) but requires +/- 3D.
- {-2,-1,0,1,2} makes selection more complex

Radix-4 SRT

- If P is in [-1/2, +1/2) then q = 0; skip and shift.
- If P >= +1/2 then q = 1 and subtract D
- If P < -1/2 then q = -1 and add D
- Correct by subtracting -1s from 0s
Radix-4 SRT

Digit set [-2...+2] now easy generation but the selection (right) is more complex.

SRT

- Has been the most widely used (especially radix-4); radix-8 is also sometimes used. That’s probably the practical limit though it’s possible to pipeline 2 lower order SRT to get the equivalent of a higher order SRT.
- Since it’s subtractive, SRT gives IEEE quotient and the remainder.