EE 486: lecture 2, the floating point numbers

M. J. Flynn

FPN: basic idea

- \(m \in M \), machine numbers; \(r \in R \), result numbers; \(R \) includes all \(M \)
- A FPN is \(+/- \, 0 \cdot M \times \beta^r \)
- \(\beta = 1, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \)
- 6 attributes define a FPN

FPN: basic terms

- \(m \in M \), machine numbers; \(r \in R \), result numbers (\(R \) includes \(M \) and more)
- Expressed as six implicit or explicit parameters:
 - Sign of the number (explicit: usually \(S+M \))
 - Radix point (implicit: fraction or significand)
 - Mantissa or significand (explicit: length implicit)
 - Radix (implicit)
 - Exponent and sign (usually excess coded)

FPN, more on the terms

- Exponent is usually represented in form of characteristic (or an excess code)
- Characteristic = \(\exp + \text{bias} \); where the bias is usually \(\frac{1}{2} \beta^e \), \(n \) is the number of exp digits (bits)
- Why excess code?
 - Simplifies compares
 - Representation of zero is all zeros (same as integers)
 - Zero has minimum absolute exponent

FPN, more on terms

- Sign of the number: \(s \) is usually in \(S+M \) where \(a (-0) \) is not allowed
- Radix: only 2 or 16 are is use, \(\beta = 2 \) provides greater representational capacity, \(\beta = 16 \) makes shifting easier and faster.
- Radix point: 0.1 or 1.0 with \(\beta = 2 \); either immediately before or after the MSD of the fraction.
- Mantissa, fraction, significand synonyms

More FPN concepts

- Maximum representable number, max
 \[\text{max} = \beta^{\text{max}} M_{\text{max}} = \beta^{\text{max}} (1 - \beta^{-m}) \], \(m \) is mantissa bits
- Minimum representable (non 0) number,
 \[\text{min} = \beta^{\text{min}} M_{\text{min}} \]
- Range is [min, max]
- Precision is \(\beta^{-m} \) same as ulp (unit in the last place)
- Gap is \(\beta^{\exp} \times \text{ulp} \).
Normalized nos., over/under flows and hidden “1”

- Normalized no. has non 0 msd; unnormalized in anything else; denormalized is unnormal with min exp
- Overflow: result > max... then either set o flag or set result to infinity representation.
- Underflow: min > result > 0. Then either set u flag or set result to zero.
- Hidden 1: if β = 2 then msb of mantissa =1 so imply it (1.xxx or 0.1)xxx

Rounding

- Rounding is the mapping of result number r ∈R, to an adjacent machine number m ∈M.
- Various types:
 - RZ(r) truncation of r to m
 - RN (r) round to nearest, up in a tie or round to nearest even
 - RP (r) round to positive infinity
 - RM (r) round to minus infinity

Four classic FPN systems

- Generic binary, classic 36b old style fpns, ca. 1952-1990.
- Hex, β = 16, main frames
- Cray, quick and “dirty” binary, still useful for signal processing applications.
- IEEE standard binary, the most complicated and, by now, the most widely used

Generic binary

- Bias = 2^8/2 = 128
- Max = 2^{127} (1 - 2^{-27}), Min = 2^{-128} (2^{-1})
- Precision = 2^{-27}
- Round is RZ(r) only, no hidden 1
- Set o flag on overflow, set r to 0 on underflow.

Mainframes (S 360 ca 1963)

Mantissa has 6 hex digits; note a normalized number may have leading digit 0001. The exponent (char) uses a binary radix.

- So bias is 2^7/2 = 64, emax is 127-64 = 63 and emin = -64
- Then Max = 16^{63} (1 - 16^{-4}) and Min = 16^{-64} (16^{-1})
- Set o flag on overflows and either set u flag or set r to 0 on underflows

Mainframe FPN, more

- In addition to single (32b), there’s double (64b) arranged 1+7+56(14 digits) and quad (128b)
- Rounding is RZ(r) or RN (r)
- Implementations must use guard digit otherwise 1 × X is not = X (as 1 is 0001)
- Newer mainframes (S 390) offer both the old format and IEEE.
IEEE format, the basics
- Single: (32b) s+e+m bit layout is 1+7+23
- Double: (64b) 1+11+52
- Extended: (44b) 1+11+31 and (80b) 1+15+63 for register only operations; also quad
- \(\beta = 2 \) with S + M representation
- Hidden 1 to the left of radix point (1).xxx
- Exponent bias (2^2/2) -1 not 2^2

IEEE format more basics
- Four rounding modes RZ(r), RN(r), round to nearest even, an unbiased round, RP(r), RM(r)
- Denormalize when exp is min and corresponding significand is less than min.
- Special indicators or allowance for +/- infinity, +/- 0, denormal, NAN..not a number
- Signed zero!

Guard bits and rounding
- Before post normal the result should be computed to

```
  L   G   R   S
```

Before post-normal, several leading “1”s can proceed the binary point. G is first guard digit, round bit, R is the second guard bit and S is the sticky bit (the OR of all lower order bits).

Guard bits and rounding
- The rounding of the result adds A after post normalization

```
  L   G   R   S
```

First must combine R and S and then add A to the G bit. The action, A, is derived from L, G and S

Action table for RN

<table>
<thead>
<tr>
<th>L</th>
<th>G</th>
<th>S</th>
<th>Action</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>Exact result, no round</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>Inexact result, but significand already rounded correctly</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Tie case with even L, no rounding</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Tie case with odd L, round to even</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>Round to nearest</td>
<td>1</td>
</tr>
</tbody>
</table>

IEEE reserved operands

<table>
<thead>
<tr>
<th>S, sign</th>
<th>Biased exp</th>
<th>Significand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>+ zero</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>- zero</td>
</tr>
<tr>
<td>0/1 0</td>
<td>Not 0</td>
<td>+/- a denormalized number</td>
<td></td>
</tr>
<tr>
<td>0 255</td>
<td>0</td>
<td>+ infinity</td>
<td></td>
</tr>
<tr>
<td>1 255</td>
<td>0</td>
<td>- infinity</td>
<td></td>
</tr>
<tr>
<td>X 255</td>
<td>Not 0</td>
<td>NAN not a number</td>
<td></td>
</tr>
</tbody>
</table>