EE 486 lecture 9: Multiply

M. J. Flynn

• Consider Booth: 2X – X should = X

Multiply

• Generating the partial products (pp’s)
 – Booth encoding
 – Direct sub multipliers
• Reducing (or assimilating) the pp’s
 – Arrays (2D)
 – Higher order arrays
 – Trees (3D)
• Iteration on the pp tree (or array)

Truncated multiply

• The multiplication operation forms a 2n bit product, but only needs to store an n bit result.
• Can truncate low order bits, if guard lsb with g=\lfloor \log_2 n \rfloor bits plus k
• k=1/2 h’ (the tree height at lsb of g)

IEEE multiply and truncation

• In IEEE need full tree, but low order bits need only a zero detect for each bit.
• Then sticky bit, s=\neg(\Sigma z) for each of the low order bits
• If we truncate (X \times Y)^j then it should be that (X \times Y)^j = (Y \times X)^j if non Booth is used then this is true for all X, Y since we have the same number of 1’s in each column

Truncated Booth

• This may not provide (X \times Y)^j = (Y \times X)^j
• Consider Booth: 2X – X should = X
• If X=00010(1^j)
• 2X=00101
• C(X) =11110 or C(X)=11010,
• Not the same results

Reducing the pp’s

• The basic unit of reduction is the CSA (carry save adder)
• This is simply a binary full adder that takes 3 inputs of the same weight and provides 2 outputs, sum and carry. It’s also called a (3,2) counter.
• In adding 3 numbers X, Y and Z we reduce the 3 operand to 2 and then do a single CPA
CSAs

- By using CSAs we reduce the 3 input operands to 2 in 2 gate delays, then do a CPA
- Can extend to n operands
- In case of multiply these operands are the pp’s

Multiplier topology

- Refers to the way bit positions in the pp reduction are interconnected.
- Can be either arrays or trees
- Two important measures of a topology are
 1) the minimum number of wires needed to interconnect the counters within a single bit position, and 2) the number of counter delays required to reduce the pp’s to the 2 inputs to the CPA.

Using CSAs in linear arrays

Wires vs. gates

- Arrays minimize w at the expense of gate delays.
- Wiring channel can determine the column bit pitch, forcing larger designs with more overall wire.
- Some circuit techniques use 2 wires/signal (eg dual rail domino), while fast they can only be used when w can accommodate it.
• More than 2 sub arrays summed by counters or compressors.
• A single linear arrays has \(w=3 \) and \(h=n-2 \).
• A double array create 2 sub arrays of \(h=(n-2)/2 \); provides 4 pp’s to be summed by a [4:2] and then a CPA.
• The double array has \(w=5 \)

Double Arrays

\[\text{Simple array, } w=3 \]

\[\text{Double Array, } w=5 \]

\[\text{Higher order arrays (Al-Twaijry’94)} \]

• More than 2 sub arrays summed by counters or compressors.
• Optimum configurations arrange unequal length linear sub arrays into a string of [4:2] compressors so that the shortest sub array has the longest compressor chain and all paths are balanced.

\[\text{Structure of higher order array} \]

\[\text{Higher order array, } w=5 \]

• As in the case of the double array a linear (or simple) array with \(w=3 \) is bypassed with the 2 outputs of a [4:2] compressor.
• Gives a total \(w=5 \).
• So, by construction, all arrays should have no more than \(w=5 \).
Arrays, width and depth in (3,2) levels

<table>
<thead>
<tr>
<th>Array type</th>
<th>w, lines per bit</th>
<th>d, # of (3,2) counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>(n-2)</td>
</tr>
<tr>
<td>double</td>
<td>5</td>
<td>((n-4)/2 + 2 = n/2)</td>
</tr>
<tr>
<td>higher order</td>
<td>5</td>
<td>(O(2 \sqrt{n}))</td>
</tr>
</tbody>
</table>

Trees

- Trees differ from arrays in that they optimize depth (the number of counter delays at the expense of width, \(w\)).
- The width of a tree (number of wires per bit position) is a function of \(n\), the height of the pp reduction array.
- Trees are either regular whose width is a known function of \(n\) or irregular where \(w\) is determined by design layout.

Types of trees

- **Wallace tree**: a fast irregular tree using (3,2) counters; \(w\) depends on layout. Variations use \((m,n)\) counters.
- **Binary tree**: regular tree using [4:2]s, \(w\) is predictable.
- **ZM trees**: regular tree with \(w=5\) (becomes a higher order array).
- **OS (overturned staircase) trees**: regular, can achieve Wallace tree delay.

Wallace (’64) big, old, trees

- The basic tree is the Wallace tree. It uses the 3,2 counter to reduce \(n\) operands to 2.
- Requires about \(\lceil \log_2 n/2 \rceil\) levels.
- No concern about \(w\).

Other counters can be used

- **Dadda-Stenzel counters**: have the form \((C_{i1}, \ldots, C_{i0}, d)\) each \(C_i\) is the height of the \(i\)th column and \(d\) is the number of output bits.
- (5,5,4) and (7,3) are the usual alternatives to (3,2).
A 12x12 using 4x4 for pp generation and (5,5,4) counters for reduction

Counter considerations
- A ROM can be used to implement any counter: \((\Sigma_c)x d\), e.g. \((2,2,2,2,2,2)\)
- Popular counters usually maximize the output states, so that \(d\), almost a power of 2
- Counters are usually realized from \((3,2)\)'s perhaps somewhat reconfigured.
- Can also have direct realizations using custom logic, PLAs tables, etc.

Compressors and counters
- Wallace trees are irregular in structure and are difficult to layout as their wiring requirements are determined only at layout
- A more regular tree is a binary tree. This is implemented using [4:2] compressors, this is a form of (5.3) counter. It can be implemented using 2 (3,2) counters, although it's possible to reconfigure these to create a [4:2] delay faster than 2 x (3,2) delays

Binary tree (Weinberger '81): 16 pp's showing 1 bit

Binary trees
- Delay in CSA levels is 2\((\log_n - 1)\)
- Wire channel size seems to be \(n\) (the number of pp’s), but it can be improved by bringing in each pp at an optimum point on the bit position of the tree.
- \(w = 2\log_2 n\)
Overturned staircase (OS) tree (Mou and Jutnad ‘90)

- Similar to ZM but achieves Wallace tree type depth for most values of n.
- Recursively defined to connect branch of depth k-2 (CSAs) to body of depth k-1 to form tree of depth k.
- As with ZM higher order (types) are possible, with less regularity.

ZM and OS trees

- Other regular trees are possible using (3,2) or other counters
- The ZM (Zuras-McAllister ‘86) tree is also called a balanced delay tree. It’s recursively defined by a tree body and a chain. The connection is by a [4:2]. So the tree grows as 1,1,3,5,7... in CSA levels
- It effectively becomes a high order array with w=5 and d= Θ (2 sqrt n)
Multiply

- There’s a broad tradeoff in topology allowing the designer to select w and d to optimize the performance of the multiplier.
- Of course the pp reduction is only one part of the structure. It must be compatible with the pp generation and the CPA.