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1 Background Theory

The idea of boundary element methods is that we can approximate the solu-
tion to a PDE by looking at the solution to the PDE on the boundary and
then use that information to find the solution inside the domain. This sounds
like a strange idea, but it is a very powerful tool for finding solutions. In
particular BEM is useful on very large domains where a FEM approximation
would have too many elements to be practical.
A PE example of where BEM would be superior to FEM is a series of wells
in an infinite reservoir. In order to use FEM the reservoir would have to be
gridded to some large distance from all of the wells so that boundary has little
impact on the pressure solution at the wells. There are two disadvantages
here: First of all how far from the wells is “far enough?” Do we need 10
gridblocks beyond the wells near the edge to get an accurate solution? 100?
1000? Second of all, the FEM approximation would probably involve an
extremely large mesh in which most of the elements are far from the wells.
So this method would spend a lot of time computing approximations in the
gridblocks far from the wells, which is not generally the part of the domain
we are interested in. In order to apply BEM to this problem we would
only have to create a mesh on the boundary of the domain. For an infinite
reservoir the only boundaries are the wells. This means that we would spend
all of our time finding the solution at the wells, which IS usually the part of
the domain that we are interested in. Moreover, since the BEM mesh only
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approximates the pressure solution at the wells the domain is small and this
is a computationally inexpensive problem.

FEM BEM
discretization of whole domain discretization of boundary

good on finite domains good on infinite or
semi-infinite domains

approximates u, q must approximates q and u
be found from u and approximation of q

may not be as accurate is accurate
large, sparse matrix small, filled-in matrix

Ku = F Hu = Gq
requires no prior knowledge requires a fundamental

of solution solution to the PDE
solves most linear can be difficult to solve
second-order PDEs inhomogenerous or

nonlinear problems

1.1 Linear Differential Operators

The idea of linear operators is one that we have been using informally for
most of the class. A linear differential operator, denoted L is a function such
that

L =
dn

dxn
+ p1 (x)

dn−1

dxn−1
+ . . . + pn−1 (x)

d

dx
+ pn (x) (1)

in one dimension or

L = ∂n

∂xn + p1 (x, y) ∂n−1

∂xn−1 + q0 (x, y) ∂n

∂yn + q1 (x, y) ∂n−1

∂yn−1 + r1 (x, y) ∂n−1

∂xm∂yn−1−m

+ . . . + rn−2 (x, y) ∂2

∂x∂y
+ pn−1 (x, y) ∂

∂x
+ qn−1 (x, y) ∂

∂y
+ pn (x, y)

(2)
in two-dimensions.

2



All linear operators have the property that L(αu + βv) = αL(u) + βL(v)
where α and β are constants and u and v are functions.
The adjoint operator L∗ is the function that makes∫

Ω

L (u) vdΩ =

∫
Ω

uL∗ (v) dΩ. (3)

Fortunately many operators are self-adjoint so that L = L∗. Even if L is not
self-adjoint, usually L and L∗ are similar functions that differ by a ± sign in
one or more terms.

1.1.1 Example of a Self-Adjoint Operator

Let L = d2

dx2 + 1 on the interval [0, 1]. L(u) = d2u
dx2 + u. Now∫ 1

0
d2u
dx2 w + uwdx = du

dx
w

∣∣1
0
−

∫ 1

0
du
dx

dw
dx

dx +
∫ 1

0
uwdx

= du
dx

w
∣∣1
0
− dw

dx
u
∣∣1
0
+

∫ 1

0
d2w
dx2 udx +

∫ 1

0
uwdx =

boundary terms +
∫

Ω
uL (v) dΩ

(4)

Since the function w was arbitrary we can assume that w and dw
dx

are both zero
at x = 0 and x = 1 so that the boundary terms drop out. As a consequence∫ 1

0
L (u) vdΩ =

∫ 1

0
uL (v) dΩ, so this operator is self-adjoint.

1.2 The Fundamental Solution

Consider the Laplace euqation in two-dimensions:

∂2u

∂x2
+

∂2u

∂y2
= 0 (5)

along with some boundary conditions. The fundamental solution or Freespace
Green’s Function satisfies the equation

d2w

dx2
+

d2w

dy2
+ δ (ξ − x, η − y) = 0 (6)

on the domain −∞ < x <∞, −∞ < y <∞. δ is the dirac-delta function in
two-dimensions. ie a point source of infinite strength at (ξ, η).
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The fundamental solution of any PDE is the analytical solution of the gov-
erning PDE under action of a point source and on an infinite domain. The
fundamental solutions of most common linear operators are well known, but
it can be very challenging to find the fundamental solution for inhomoge-
neous, non-linear or anisotropic operators.
In BEM the fundamental solution will be used as the weighting function in
the integral equation and is analgous to the test functions v in finite elements.
Transforming the Laplace equation to radial coordinates where the radius r
is measured from the point (ξ, η).

∇2w =
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
= 0 (7)

and

r =

√
(ξ − x)2 + (η − y)2. (8)

The δ term has disappeared from the equation because it is only nonzero
when r = 0, so now the delta function is acting as a boundary condition that
says that w → ∞ as r → 0. The ∂2w

∂θ2 term is also zero because we have an
infinite domain so the final equation is 1

r
∂
∂r

(
r ∂w

∂r

)
= 0 which has the solution

w = A ln r + B. (9)

This solution satisfies the boundary condition at r = 0 since ln r → ∞ as
r → 0, but so far we have no information on how to find A and B.
Looking back at the original equation in cartesian coordinates we can inte-
grate so that ∫

Ω

∇2wdΩ +

∫
Ω

δ (ξ − x, η − y) dΩ = 0 (10)

if (ξ, η) ∈ Ω then
∫

Ω
δ (ξ − x, η − y) dΩ = 1. Since Ω is arbitrary, we will

assume that (ξ, η) ∈ Ω. This means that
∫

Ω
∇2wdΩ = −1. Since Ω is

arbitrary we can assume that it is a circle of radius ε > 0 centered at r = 0.
Now by the Green-Gauss theorem (see Kreyszig p 490)
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∫
Ω

∇2wdΩ =

∫
∂Ω

∂w

∂n
ds (11)

where n is the normal vector and s is the distance along the path counter-
clockwise. Since r and the normal vector n will always point in the same
direction when Ω is a circle this is equivalent to∫

∂Ω

∂w

∂r
ds (12)

but since we know that w = A ln r +B we can find ∂w
∂r

= A
r

= A
ε

and we have
that ∫ 2πε

0

A

ε
ds =

A (2πε)

ε
= −1 (13)

so A = −1
2π

. Since we have no good way to find B, it is usually set to zero for
convenience. The fundamental solution for the Laplace equation is

w =
−1

2π
ln r. (14)

2 Derivation of the Boundary Element Method
in 2D

Exactly like in the finite element method we are trying to solve a PDE by
using a weighted integral equation. In this example we will look at the
Laplace equation, but BEM can be derived for any PDE for which we can
find a fundamental solution.
Once again we begin by multiplying the PDE by a weighting function w and
integrate over the domatin to find a weak solution:

∇2u = 0⇒ w
[
∇2u = 0

]
⇒

∫
Ω

[
∇2uw

]
dΩ = 0 (15)

Using the Green-Gauss theorem gives
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∫
Ω

[
∇2uw

]
dΩ =

∫
∂Ω

∂u

∂n
wds−

∫
Ω

∇u∇wdΩ. (16)

Integrating by parts again in order to get a second derivative on the weighting
function w:∫

Ω

[
∇2uw

]
dΩ =

∫
∂Ω

∂u

∂n
wds−

∫
∂Ω

∂w

∂n
nds +

∫
Ω

u∇2wdΩ (17)

This shows that the Laplace operator is self adjoint.
In FEM we chose simple piecewise polynomials as our weighting (test) func-
tions. In BEM we will choose the fundamental solution so that the last term
becomes ∫

Ω

u∇2wdΩ = −
∫

Ω

uδ (ξ − x, η − y) dΩ = −u (ξ, η) (18)

assuming that (ξ, η) ∈ Ω and not on the boundary. This gives us the boundary
integral equation

−
∫

∂Ω

∂u

∂n
wds +

∫
∂Ω

∂w

∂n
nds + u (ξ, η) = 0 (19)

for (ξ, η) ∈ Ω. This means that we can (in theory) find u at an arbitrary
point (ξ, η) ∈ Ω by looking at u and w only on the boundary. This still
doesn’t help us unless we know u and/or ∂u

∂n
on the boundary. In order to

solve this problem we will look at what happens if (ξ, η) is on ∂Ω.
First, what happens if (ξ, η) /∈ Ω:∫

Ω

u∇2wdΩ = −
∫

Ω

δ (ξ − x, η − y) dΩ = 0 (20)

because δ is zero everywhere in Ω.
Assume that some point P = (ξ, η) is on ∂Ω. Define a disk with radius ε
around P . Now we have two subdomains on the boundary ∂Ω = ∂Ω−ε +∂Ωε.
We want to take the limit of each domain as ε → 0. In order to do this we
will have to look at four integrals:
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∫
∂Ωε

u
∂w

∂n
ds =

∫
∂Ωε

u
∂

∂n

(
−1

2π
ln r

)
ds =

∫
∂Ωε

−u

2πr
ds (21)

=
−1

2πr

∫
∂Ωε

uds = −u (P )
πε

2π
=
−u (P )

2
(22)

where r = ε is fixed since the domain is a circle and in the limit of the integral
is the value at P by the mean value theorem. Similarly

lim
ε→0

∫
∂Ωε

w
∂u

∂n
ds =

− ln ε

2π

∫
∂Ωε

∂u

∂n
ds =

− ln ε

2π

∂u (P )

∂n
πε→ 0 (23)

For the two integrals over ∂Ω−ε we have that

lim
ε→0

∫
∂Ω−ε

w ∂u
∂n

ds =
∫

∂Ω
w ∂u

∂n
ds

lim
ε→0

∫
∂Ω−ε

u∂w
∂n

ds =
∫

∂Ω
u∂w

∂n
ds

(24)

Putting this all together gives

u (P ) +

∫
∂Ω

u
∂w

∂n
ds =

1

2
u (P ) +

∫
∂Ω

w
∂u

∂n
ds (25)

1

2
u (P ) +

∫
∂Ω

u
∂w

∂n
ds =

∫
∂Ω

w
∂u

∂n
ds (26)

for u(P ) on ∂Ω and ∂Ω smooth at P . If ∂Ω is not smooth at P then

(
1− α

2π

)
u (P ) +

∫
∂Ω

u
∂w

∂n
ds =

∫
∂Ω

w
∂u

∂n
ds (27)

where α is the interior angle of the corner at P . In general

c (P ) u (P ) +

∫
∂Ω

u
∂w

∂n
ds =

∫
∂Ω

w
∂u

∂n
ds (28)

c (P ) =


1 P ∈ Ω

1/2 P ∈ ∂Ω, ∂Ω smooth(
1− α

2π

)
P ∈ ∂Ω, ∂Ω not smooth

0 P /∈ Ω

(29)

(30)
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3 Putting it All Together

In order to formulate BEM we need to divide the 2D domain up into N
boundary elements or subdomains Γi. We will make a number of assumptions
about the elements and the functions on the elements:

• We will be given either u or q = ∂u
∂n

on a given element Γi. BEM will
be used to find the other.

• Each element has one node at its center.

• We will assume that both u and q are constant on each element, even
though the exact function q = ∂u

∂n
would have a lower order than u.

This is called an isoparametric formulation.

• Like in FEM it is possible to define nodes at the end of the elements
and use linear functions, or to define three nodes per element and use
quadratics. We will constrict our focus to constant elements because
they are simplest.

• Because each element has only one node for constant elements u and q
are not continuous on the boundary.

• The boundary is always smooth for constant elements since we are
always evaluating the function at the midpoint of the line connecting
the two edges of the element. As a consequence c(P ) = 0.5.

Consider the point i on the boundary:

1

2
ui +

∫
∂Ω

u
∂w

∂n
ds =

∫
∂Ω

w
∂u

∂n
ds (31)

1

2
ui +

∑N

j=1

[∫
Γj

uq∗dΓ

]
=

∑N

j=1

[∫
Γj

wqdΓ

]
(32)

(33)

where q∗ = ∂w
∂n

. Since uj and qj are constant on each element
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1

2
ui +

∑N

j=1
uj

[∫
Γj

q∗dΓ

]
=

∑N

j=1
qj

[∫
Γj

wdΓ

]
. (34)

This gives two integrals that we need to approximate:

Ĥij =

∫
Γj

q∗dΓ and Gij =

∫
Γj

wdΓ. (35)

these integrals give the influence of some node j on the fundamental solution
that is centered at i on the boundary and are called influence coefficients.
For a single point i on the boundary

1

2
ui +

∑N

j=1
ujĤij =

∑N

j=1
qjGij (36)

so ui = ui(u1, u2, . . . , uN , q1, q2, . . . , qN). Since half of all of the ui and qi are
specified by doundary conditions we need N equations like Eq. 36. This
is accomplished by moving the singular point i around the boundary and
evaluating at every node i = 1, . . . , N . For simplicity define

Hij =

{
Ĥij i 6= j

Ĥij + 0.5 i = j
(37)

Now we have N equations

∑N

j=1
ujHij =

∑N

j=1
qjGij (38)

Which becomes the matrix equation HU = GQ where H and G are N ×N
matricies and U and Q are vectors of length N :


H11 H12 . . . H1N

H21 H22
. . . H2N

... . . . . . . ...
HN1 HN2 . . . HNN




u1

u2
...

uN

 =


G11 G12 . . . G1N

G21 G22
. . . G2N

... . . . . . . ...
GN1 GN2 . . . GNN




q1

q2
...

qN


(39)
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This formulation of the problem presents a problem since u is given in some
places and q is given in others. In order to solve the linear equation we will
have to get all of the unknowns on the left hand side of the equation and
the knowns on the right hand side. This is accomplished by shuffling the
columns of the matrix.
The easiest way to explain this is by using an example. Suppose that the
boundary is divided up into 12 elements. The value of u is given on each of
the first six boundary elements so that ui = ûi for i = 1, . . . , 6. The value of
1 is given on elements seven through 12 so that qi = q̂i for i = 7, . . . , 12.

 H1,1 . . . H1,6 H1,7 . . . H1,12
... . . . ...

... . . . ...
H12,1 . . . H12,6 H12,7 . . . H12,12




û1
...

û6

u7
...

u12



=

 G1,1 . . . G1,6 G1,7 . . . G1,12
... . . . ...

... . . . ...
G12,1 . . . G12,6 G12,7 . . . G12,12




q1
...
q6

q̂7
...

q̂12



(40)

Now u7 to u12 and q1 to q6 are the unknowns. When they are shuffled to the
left hand side of the equation we get
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 G1,1 . . . G1,6 −H1,7 . . . −H1,12
... . . . ...

... . . . ...
G12,1 . . . G12,6 −H12,7 . . . −H12,12




q1
...
q6

u7
...

u12



=

 H1,1 . . . H1,6 −G1,7 . . . −G1,12
... . . . ...

... . . . ...
H12,1 . . . H12,6 −G12,7 . . . −G12,12




û1
...

û6

q̂7
...

q̂12



(41)

which is a matrix equation of the form Ax = f . Now we can find q and u at
every point on the boundary by multiplying x = A−1f . Notice that A is a
dense matrix, which makes this a more computationally expensive matrix to
solve than in FEM. The advantage is that we are solving a 1D problem on
the boundary rather than a 2D problem, so this is a smaller, denser matrix
than we would get from FEM.
In order to find the value of u at some point in the interior of the domain we
go back to Eqs. 28-30 to see that

ui =

∫
Γ

wqdΓ−
∫

Γ

uq∗dΓ (42)

which simplifies to

ui =
∑N

j=1
qjGij −

∑N

j=1
ujĤij (43)

Frequently we are not only interested in the value of u at point i, but also
the flux in the x or y direction. We can find the flux in the x direction from

qix =
∂u

∂x
=

∫
Γ

(
∂w

∂x

)
i

qdΓ−
∫

Γ

u

(
∂q∗

∂x

)
i

dΓ (44)

where there are no partial derivatives of u and q because they are constants
along each element. Putting in the element mesh gives
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qi =
∑N

j=1
qj

∫
Γj

(
∂w

∂x

)
dΓ−

∑N

j=1
uj

∫
Γ

(
∂q∗

∂x

)
dΓ. (45)

Notice that because we are looking at the x-direction flux, so the term ∂q∗

∂x
is

a mixed partial derivative.
Typically all of the integrals in BEM integrated numerically using quadrature
rules, just like in FEM. Since in BEM the integrals have complex functions
inside, it is typically necessary to use high-order approximations.
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