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1 Introduction

Wavelets were developed in the 80’s and 90’s as an alternative to Fourier
analysis of signals. Some of the main people involved in this development
were Jean Morlet (a petroleum engineer), Alex Grossman, Yves Meyer,
Stephane Mallat, and Ingrid Daubechies.

Waveletes are particularly useful for signal analysis, signal compression,
and signal de-noising. However, they are also of use to

• geologists, for analyzing seismic data,

• FBI, for analyzing voice data

• the image processing community. The JPEG 2000 standard uses
wavelets, replacing the discrete cosine transform.

• the film industry, for animation (e.g. “A Bug’s Life”). Wavelets are
ideal for representing changes in an image with as little data as pos-
sible, so a sequence of frames in an animation can be stored more
efficiently.

• the CFD community, for solving PDE.

2 Drawbacks of Fourier Analysis

• Location information is stored in phases and difficult to extract. For
example, consider discrete functions defined on an N -point grid with
grid points xj = jh, j = 0, 1, . . . , N − 1, where h = 2π/N . If f(x) is
defined by

f(xj) =

{
1 j = k
0 j 6= k
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for some k, then the discrete Fourier transform, defined by

f̂(ω) =
h√
2π

N−1∑
j=0

e−iωxjf(xj),

is given by

f̂(ω) =
h√
2π
e−iωxk .

We see that the Fourier coefficients all have the same magnitude, so
the only way to tell from the Fourier transform that this function is
concentrated at a single point in physical space, and to determine the
location of that point, is to examine the phase of the coefficients.

Because of this, it can be very difficult, if not impossible, to determine
whether a signal includes a particular frequency at a particular point
in physical space (which may refer to space or time). This is especially
difficult for a high frequency, in view of the sampling theorem, which
states that a signal with n frequencies can be represented with com-
plete accuracy using 2n samples per second. However, this sampling
rate must be maintained for the entire duration of the signal, not just
the interval of interest.

• The Fourier transform is very sensitive to changes in the function.
In view of the previous example, a change of O(ε) in one point of a
discrete function can cause as much as O(ε) change in every Fourier
coefficient. Similarly, a change in any one Fourier coefficient can cause
a change of similar magnitude at every point in physical space.

3 Windowed Fourier Transform

To overcome these drawbacks, we could use the Windowed Fourier Trans-
form (WFT), in which we take the Fourier transform of a function f(x) that
is multiplied by a window function g(x−b), for some shift b called the center
of the window, where g(x) is a smooth function with compact support. The
coefficients Fwin(ω, b) of the WFT are given by

Fwin(ω, b) =
∫ ∞

−∞
e−iωxg(x− b)f(x) dx.

Unfortunately, this transform is difficult to invert, due to its excessive redun-
dancy, and it does not capture short “pulses” accurately, unless a very small
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window is used. But in that case, low-frequency content cannot be accu-
rately captured. This is due to the Uncertainty Principle, which states that
a function cannot be simultaneously concentrated in both physical space
and Fourier space.

4 Wavelets

A better solution is to use wavelets. A function ψ(x) is a wavelet if it satisfies
these conditions.

•
∫∞
−∞ ψ(x) dx = 0

•
∫∞
−∞

|ψ̂(ω)|2
ω dω ≡ Cψ <∞

The second condition is necessary to ensure that a function can be recon-
structed from a decomposition into wavelets.

5 Wavelet Families

A wavelet family is a collection of functions obtained by shifting and dilating
the graph of a wavelet. Specifically, a wavelet family with mother wavelet
ψ(x) consists of functions ψa,b(x) of the form

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
,

where b is the shift or center of ψa,b, and a is the scale. Alternatively, the
scaling factor 1/a may be used. If a > 1, then ψa,b is obtained by stretching
the graph of ψ, and if a < 1, then the graph of ψ is contracted. The value
a corresponds to the notion of frequency in Fourier analysis.

6 CWT

The continuous wavelet transform (CWT) of a function f(x), introduced by
Morlet, is defined by

Wf(a, b) =
∫ ∞

−∞
f(x)ψa,b(x) dx.

The inverse transform is given by

f(x) =
1
Cψ

∫ ∞

−∞

∫ ∞

−∞

1
|a|3/2

Wf(a, b)ψa,b(x) da db
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where the constant Cψ was defined in Section 4. The CWT records changes
in f(x), which is very useful for compression or noise removal, since changes
at finer scales can be omitted in a reconstruction.

7 Jump Detection

Consider the Heaviside function H(x). If we use the scaling factor 1/a
intead of 1/

√
a for ψ(a, b), then all of the coefficients WH(a, 0) of the CWT

of H(x) are equal. When the magnitude of the coefficients Wf(a, b) do not
decrease in magnitude for all a and a particular b, this suggests that there
is a discontinuity in f(x) near x = b.

8 Well-known wavelets

Some well-known wavelets are

1. Mexican hat: useful for detection in computer vision. It is the second
derivative of a Gaussian function.

2. Haar: the first wavelet, introduced in 1909. It is defined by

ψ(x) =


1 0 ≤ x < 1/2
−1 1/2 ≤ x < 1
0 otherwise

.

Its simple definition is helpful for computing wavelet transforms, but
because it is not continuous, it is not as useful as other wavelets for
analyzing continuous signals.

3. Daubechies-p: wavelets with p vanishing moments, to represent poly-
nomials of degree at most p− 1. A Daubechies-1 wavelet is equivalent
to the Haar wavelet. As p increases, signals can be represented using
fewer coefficients, due to fewer scales being required. On the other
hand, the support of the wavelet grows with p.

9 Discrete Wavelet Transform

In practice, signals are discrete, rather than continuous. This leads to the
discrete wavelet transform (DWT). The coefficients are defined as before,
except:
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1. Only particular values of a and b are used

2. Due to the discrete representation of the signal, the integrals that
define the coefficients must be computed numerically.

Given a mother wavelet, an orthogonal family of wavelets can be obtained
by properly choosing a = am0 and b = nb0, where m and n are integers,
a0 > 1 is a dilation parameter, and b0 > 0 is a translation parameter.

To ensure that wavelets ψa,b, for fixed a, “cover” f(x) in a similar manner
as m increases, we choose b0 = βam0 . For rapid calculation of the wavelet
coefficients, we choose β = 1 and a0 = 2. Note that by choosing b0 < 2m,
we obtain a redundant wavelet family, whereas choosing b0 > 2m leads to an
incomplete representation of the transformed function. Therefore b0 = 2m

is the optimal choice, and in fact leads to an orthogonal family.
With these choices of a and b, the DWT of a function f(x) is given by

Wf(m,n) = 〈ψm,n, f〉 =
∫ ∞

−∞
ψm,n(x)f(x) dx

where
ψm,n(x) = 2−m/2ψ

(
x− n2m

2m

)
.

The inverse transform is given by

f(x) =
∑
m,n

ψm,n(x)Wf(m,n).

It should be noted that even though the integral defining Wf(m,n) is on an
unbounded interval, it is effectively on a finite interval if the mother wavelet
has compact support, and therefore can easily be approximated numerically.

10 Example

We now show how the DWT of a signal can be computed, using the Fast
Wavelet Transform, developed by Mallat. It uses two families of functions:
a family of wavelets ψm,n, based on a mother wavelet ψ, and a family of
scaling functions (also known as smoothing functions) φm,n, based on a father
wavelet φ. The purpose of the scaling functions is to smooth portions of the
signal. The scaling and wavelet functions are used together to compute the
DWT of a signal g(x), by means of the following process:

1. Choose m such that the minimum spacing between samples is approx-
imately 2m−1.
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2. For each integer n, compute dm,n = 〈ψm,n, g〉. This extracts the
highest-frequency components of g, and is referred to as applying a
high-pass filter to g.

3. For each n, compute sm,n = 〈φm,n, g〉. This smooths the signal g,
resulting in a new signal

g̃(x) =
∑
n

sm,nφm,n(x).

This step is referred to as applying a low-pass filter to g, as it separates
the low-frequency content from the high-frequency content that has
just been extracted by the high-pass filter.

4. Set m = m+ 1 and proceed to step 2, using the smoothed signal g̃ in
place of g.

This iteration continues until no more information about the signal can be
obtained.

This entire process is called a multiresolution analysis (MRA) of the
signal g. For each m, the set of coefficients dm,n describes how the signal
represented by the scaling coefficients sm,n is changed to obtain a higher-
resolution signal sm−1,n. If we denote by Vm the vector space spanned by
the scaling functions φm,n, and by Wm the space spanned by the wavelet
functions ψm,n, then the relationship between resolutions can be summarized
by the relation

Vj−1 = Vj ⊕Wj .

The direct sum is due to the fact that φi,m is orthogonal to ψj,n for all i, j,
m and n.

We now illustrate the FWT with a simple example. Let the signal g be
a signal defined on [0, 4) that is piecewise constant on each of the intervals
[xj , xj+1), where xj = jh, j = 0, . . . , 8, and h = 0.5. The values of g on
these eight subintervals are {0, 1, 0, 1.5, 0.5, 0, 0, 1}. For simplicity, we use
the Haar wavelet as the mother wavelet, and the associated father wavelet,
or smoothing function, is φ(x) = 1 on the interval [0, 1), and zero everywhere
else.

One advantage of using the Haar wavelet to analyze a signal g(x) is that
the inner products

sm,n = 〈φm,n, g〉, dm,n = 〈ψm,n, g〉
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can be simplified considerably, so that it is only necessary to integrate g. To
see this, we consider sm,n. Using substitutions, we obtain

sm,n = 〈φm,n, g〉

=
∫ ∞

−∞
φm,n(x)g(x) dx

= 2−m/2
∫ ∞

−∞
φ

(
x− n2m

2m

)
g(x) dx

= 2−m/2
∫ ∞

−∞
φ

(
u

2m

)
g(u+ n2m) du, u = x− n2m

= 2m/2
∫ ∞

−∞
φ (v) g((v + n)2m) dv, v = u/2m

= 2m/2
∫ 1

0
g((v + n)2m) dv

= 2m/2
∫ n+1

n
g(w2m) dw, w = v + n

= 2−m/2
∫ (n+1)2m

n2m
g(x) dx, x = w2m.

Similarly,

dm,n = 2−m/2
[∫ (n+1/2)2m

n2m
g(x) dx−

∫ (n+1)2m

(n+1/2)2m
g(x) dx

]
.

When g is piecewise constant, as in this example, these integrals can be
evaluated analytically.

In computing the FWT, the first question we should address is, which
scales will be needed? To answer this, we observe that g is piecewise constant
on intervals of width 1/2 = 2−1, which implies that g ∈ V−1. From the
relations between resolutions, g can be decomposed uniquely into a signal
g0 ∈ V0 and a detail signal d0 ∈ W0, which captures the changes that are
made to g0 to obtain g. Then, because V0 = V1⊕W1, g0 can be decomposed
into a signal g1 ∈ V1 and a detail d1 ∈W1, and so on.

Because g contains eight values, we must compute eight coefficients al-
together. To see where these coefficients come from, we note that V−1 =
W0 ⊕W1 ⊕ · · · ⊕WM ⊕ VM , where M is the index of the coarsest scale that
we will use. Therefore, the eight coefficients will come from M + 1 details
and one smoothed signal in VM . The detail d0 contains four coefficients,
because the interval [0, 4) is covered by the four wavelet functions ψ0,n for
n = 0, 1, 2, 3. The next detail d1 contains two coefficients, and the next one,
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d2, contains one, for a total of seven. The eighth coefficient is obtained from
the smoothed signal g2. Therefore, M = 2 and three scales are needed. In
general, for a signal with N points, log2N scales are needed to represent it
completely.

We begin with m = 0 and apply the high-pass filter, computing

d0,n = 〈ψ0,n, g〉

=
∫ ∞

−∞
ψ0,n(x)g(x) dx

=
∫ ∞

−∞
ψ(x− n)g(x) dx

=
∫ n+1/2

n
g(x) dx−

∫ n+1

n+1/2
g(x) dx, n = 0, 1, 2, 3.

Because φ is piecewise constant, we can easily evaluate these integrals ex-
actly, and obtain

d0,0 = −0.5, d0,1 = −0.75, d0,2 = 0.25, d0,3 = −0.5.

Next, we apply the low-pass filter, computing

s0,n = 〈φ0,n, g〉

=
∫ ∞

−∞
φ0,n(x)g(x) dx

=
∫ ∞

−∞
φ(x− n)g(x) dx

=
∫ n+1

n
g(x) dx, n = 0, 1, 2, 3.

We obtain

s0,0 = 0.5, s0,1 = 0.75, s0,2 = 0.25, s0,3 = 0.5.

It follows from the relation between resolutions, V−1 = V0 ⊕W0, that g has
a unique decomposition into the sum of an element from V0 and an element
of W0. Specifically,

g(x) =
3∑

n=0

s0,nφ0,n(x) +
3∑

n=0

d0,nψ0,n(x),

where the first sum is a smoothed, lower-resolution version of g, and the
second sum represents the changes made to this smoothed version to obtain
g.
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We now continue the transform. Working with the smoothed signal

g0 =
3∑

n=0

φ0,ns0,n = {0.5, 0.75, 0.25, 0.5} ∈ V0,

we apply the high-pass filter corresponding to m = 1, computing

d1,n = 〈ψ1,n, g0〉

=
∫ ∞

−∞

1√
2
ψ

(
x− 2n

2

)
g0(x) dx

=
1√
2

∫ 2n+1

2n
g(x) dx− 1√

2

∫ 2n+2

2n+1
g(x) dx, n = 0, 1.

We obtain
d1,0 =

−0.25√
2
, d1,1 =

−0.25√
2
.

Next, we apply the low-pass filter to obtain

s1,0 =
1√
2

∫ 2

0
g(x) dx =

1.25√
2
, s1,1 =

1√
2

∫ 4

2
g(x) dx =

0.75√
2
.

We now have

g(x) =
1∑

n=0

s1,nφ1,n(x) +
1∑

n=0

d1,nψ1,n(x) +
3∑

n=0

d0,nψ0,n(x),

where the first sum is an even smoother approximation to g than g0, the
second sum describes the high-resolution changes made to this smoother
signal to obtain g0, and the third sum describes the higher-resolution detail
added to g0 to obtain g.

We continue with m = 2, and the smoothed signal g1 = {0.625, 0.375}.
The high-pass filter yields

d2,0 = 〈ψ2,0, g1〉

=
∫ ∞

−∞
ψ2,0 (x) g1(x) dx

=
∫ ∞

−∞

1
2
ψ

(
x

4

)
g1(x) dx

=
1
2

∫ 2

0
g(x) dx− 1

2

∫ 4

2
g(x) dx = 0.25,
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while the low-pass filter yields

s2,0 = 〈φ2,0, g1〉

=
∫ ∞

−∞
φ2,0 (x) g1(x) dx

=
∫ ∞

−∞

1
2
φ

(
x

4

)
g1(x) dx

=
1
2

∫ 4

0
g(x) dx = 1.

This corresponds to the signal g2(x) = s2,0φ2,0(x) = 0.5 that is constant on
[0, 4).

The signal g2 can be represented by a single wavelet function in W3

provided a suitable extension for g2 beyond the interval [0, 4) is used. If we
extend the signal g2 so that it is equal to −0.5 on the interval [4, 8), then
we can apply the high-pass filter one more time and obtain

d3,0 =
∫ ∞

−∞

1
2
√

2
ψ

(
x

8

)
g2(x) dx =

√
2

while the low-pass filter yields

s3,0 =
∫ ∞

−∞

1
2
√

2
φ

(
x

8

)
g2(x) dx = 0.

We conclude that with the extension to [4, 8), g2 ∈ W3, and therefore g ∈
W0 ⊕W1 ⊕W2 ⊕W3, and can be expressed as

g(x) =
3∑

m=0

∞∑
n=−∞

dm,nψm,n(x),

using the inverse DWT.

11 Compression and De-Noising

As the previous example shows, a discrete signal with N samples can be
represented by N members of a wavelet family. However, if the detail coeffi-
cients corresponding to finer scales are negligible, they can be omitted from
the MRA, allowing the signal to be compressed without loss of accuracy.
Also, such coefficients may represent the noise in a signal, so dropping them
has the effect of de-noising the signal.
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