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1 Separation of Variables

In the previous lecture, we learned how to derive a PDE that describes fluid
flow. Now, we will learn a number of analytical techniques for solving such
an equation. The first such technique is called separation of variables, and
it is useful for PDEs on bounded spatial domains with constant coefficients.

Let K be a positive constant. We will solve a diffusion equation in one
space dimension:

∂u

∂t
= K

∂2u

∂x2
, 0 < x < L, t > 0, (1)

with initial condition

u(x, 0) = f(x), 0 < x < L, (2)

and Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0. (3)

In separation of variables, we assume that the solution u(x, t) has the
form

u(x, t) =
∞∑
j=1

bjuj(x, t), (4)

where each bj is a constant, and each function uj(x, t) can be written as a
product of single-variable functions:

uj(x, t) = Mj(x)Nj(t). (5)

In order for such a representation of the solution to be valid, each function
uj(x, t) should be a solution of the PDE (1), and satisfy the boundary con-
ditions (3). The constants bj will be chosen so that the initial condition (2)
will be satisfied.

Substituting uj(x, t) for u(x, t) into (1) and (3), we obtain

Mj(x)N ′
j(t) = KM ′′

j (x)N ′
j(t) (6)
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and
Mj(0) = Mj(L) = 0. (7)

At any point (x, t) such that uj(x, t) is nonzero, we can divide through (6)
by uj(x, t) and obtain

N ′
j(t)

KNj(t)
=
M ′′
j (x)

Mj(x)
. (8)

The left side of this equation is a function of t, while the right side is
a function of x. Since they must be equal for all points (x, t) such that
uj(x, t) 6= 0, we conclude that both sides must be equal to a constant. That
is,

N ′
j(t)

KNj(t)
=
M ′′
j (x)

Mj(x)
= −λ, (9)

where −λ is called the separation constant. As we will see, it is merely for
convenience that we include the minus sign.

We can now solve for Mj(x) and Nj(t) independently of one another.
Mj(x) is a solution of the boundary value problem

M ′′
j (x) + λMj(x) = 0, (10)

with boundary conditions (7). If λ = 0, then Mj(x) is a linear function,
but because of the boundary conditions, it follows that Mj(x) ≡ 0 is the
only possible solution. On the other hand, if λ < 0, then (10) is satisfied
by Mj(x) = A exp[

√
−λx], where A is a constant, but because exponential

functions are monotonically increasing or decreasing, it is not possible to
find a nonzero function of this form that satisfies the boundary conditions.

The only remaining possibility is λ > 0. In this case, the solution Mj(x)
has the form

Mj(x) = A sin(
√
λx) +B cos(

√
λx). (11)

Setting x = 0, we obtain Mj(0) = B, so we must have B = 0 in order to
satisfy the boundary conditions. Setting x = L yields

Mj(L) = A sin(
√
λL), (12)

so to satisfy the condition Mj(L) = 0, we must have
√
λL = kπ, for some

integer k. That is, λ = (kπ/L)2 and Mj(x) = A sin(kπx/L).
If k = 0, this yields the trivial solution Mj(x) ≡ 0. Because sine is an

odd function, meaning that sin(−x) = − sinx for any x, it follows that we
can obtain all of the possible linearly independent solutions (meaning, among
other things, that no two solutions are scalar multiples of each other) by only
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considering the case where k is a positive integer. Since we are indexing the
functions Mj(x) by the positive integers, it is natural to use k = j and
describe the set of all solutions to (10), (7) as follows:

Mj(x) = Aj sin
(
jπx

L

)
. (13)

We can use any nonzero value for the constant Aj , so for convenience,
we choose Aj = 1 for each j. This yields

Mj(x) = sin
(
jπx

L

)
, j = 1, 2, . . . . (14)

Next we solve, for each positive integer j,

N ′
j(t) + λjKNj(t) = 0. (15)

We obtain
Nj(t) = Bj exp[−λjKt], (16)

where Bj is an arbitrary (nonzero) constant. For convenience, we set Bj = 1
for all j.

2 Fourier Sine Series

Now, we have

u(x, t) =
∞∑
j=1

uj(x, t)

=
∞∑
j=1

bjMj(x)Nj(t)

=
∞∑
j=1

bj sin
(
jπx

L

)
exp

[
−
(
jπ

L

)2

Kt

]
.

We already know that this function satisfies the PDE (1) and the boundary
conditions (3), but now we must choose the constants bj so that the initial
condition (2) is also satisfied. Setting t = 0 yields

f(x) =
∞∑
j=1

bj sin
(
jπx

L

)
. (17)
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To find each constant bk, we multiply both sides of (17) by Mk(x) and
integrate from 0 to L. That is, we take the inner product of the functions
on both sides of the equation with Mk(x):

(Mk(x), f(x)) =
∞∑
j=1

bj(Mk(x),Mj(x)), (18)

where the inner product (u(x), v(x)) of two real-valued functions u(x) and
v(x) defined on the interval 0 < x < L is defined by

(u(x), v(x)) =
∫ L

0
u(x)v(x) dx. (19)

The functions Mj(x) are orthogonal to one another. That is,

(Mk(x),Mj(x)) = 0, k 6= j. (20)

To see this, note that if k and j are positive integers such that k 6= j, we
can use a product-to-sum identity to obtain

(Mk(x),Mj(x)) =
∫ L

0
sin
(
kπx

L

)
sin
(
jπx

L

)
dx

=
∫ π

0

L

π
sin ku sin ju du

=
L

2π

∫ π

0
cos[(k − j)u]− cos[(k + j)u] du

=
L

2π

[
sin[(k − j)u]

k − j
− sin[(k + j)u]

k + j

∣∣∣∣π
0

]
=

L

2π
(k + j) sin[(k − j)]π]− (k − j) sin[(k + j)π]

k2 − j2
= 0,

since sine is zero at any multiple of π. On the other hand, if k = j, then we
have (Mk(x),Mk(x)) = L/2.

Therefore, all of the terms on the right side of (18) vanish except for the
Kth term, which yields

bk =
(Mk(x), f(x))

(Mk(x),Mk(x))
, k = 1, 2, . . . . (21)

The constants bk, for k = 1, 2, . . . , define the Fourier sine series of f(x):

f(x) =
∞∑
k=1

bk sin
(
kπx

L

)
, (22)
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where

bk =
2
L

∫ L

0
f(x) sin

(
kπx

L

)
, k = 1, 2, . . . . (23)

Computing the coefficients of this series completes the solution process.

3 Neumann Boundary Conditions

Now, suppose that instead of the Dirichlet boundary conditions (3), we have
Neumann boundary conditions

ux(0, t) = 0, ux(L, t) = 0, t > 0, (24)

where ux is a common shorthand for ∂u
∂x . Then, we can proceed as before,

but then Mj(x) satisfies the boundary conditions

M ′
j(0) = 0, M ′

j(L) = 0. (25)

The solution to (10) has the form (11), but this time, A = 0 and B is
nonzero. We still have λ = (kπ/L)2, but this time, k = 0 yields Mj(x) = B,
so we have the solutions

Mj(x) = cos
(
jπx

L

)
, j = 0, 1, 2, . . . . (26)

The solution to (1), (2), (24) has the form

u(x, t) =
∞∑
j=0

ajMj(x)Nj(t) (27)

where Mj(x) is defined in (26) and Nj(t) is defined in (16). The constants
aj are given by the Fourier cosine series of f(x),

f(x) =
a0

2
+

∞∑
j=1

aj cos
(
jπx

L

)
, (28)

where

aj =
(Mj(x), f(x))

(Mj(x),Mj(x))
=

2
L

∫ L

0
f(x) cos

(
jπx

L

)
dx, j = 0, 1, 2, . . . . (29)

There are also mixed boundary conditions, which are linear combinations
of Dirichlet and Neumann conditions, which can be addressed in a similar
manner.
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4 Generalizations

Separation of variables can be applied to other PDEs on bounded spatial
domains besides diffusion problems of the form (1). For example, consider
the wave equation, also known as the telegraph equation:

∂2u

∂t2
= K

∂2u

∂x2
, 0 < x < L, t > 0, (30)

where K is a positive constant, with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L, (31)

with either Dirichlet or Neumann boundary conditions.
In this case, the ODE (10) that characterizes Mj(x) is the same, but to

obtain Nj(t), we must solve

N ′′
j (t) + λN(t) = 0, (32)

and since the initial conditions are not yet taken into account, Nj(t) is a
general linear combination:

Nj(t) = aj cos(
√
λt) + bj sin(

√
λt), (33)

where the two sets of constants {aj} and {bj} must be chosen in order
to satisfy the initial conditions (31). As before, the Fourier sine or cosine
series of f(x) and g(x) need to be computed, depending on the boundary
conditions.

We can also use separation of variables to solve Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < Lx, 0 < y < Ly, (34)

with boundary conditions that are homogeneous in one of the two dimen-
sions and inhomogeneous in the other. For example, Dirichlet boundary
conditions could be

u(x, 0) = 0, u(x, Ly) = 0, u(0, y) = f(y), u(Lx, y) = g(y) (35)

or

u(x, 0) = f(x), u(x, Ly) = g(x), u(0, y) = 0, u(Lx, y) = 0. (36)
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If the boundary conditions at x = 0 and x = Lx are homogeneous (for
example, if the conditions (36) apply), then they must be imposed on each
Mj(x). Then, the ODEs to be solved are

M ′′
j (x) + λMj(x) = 0, N ′′

j (y)− λNj(y) = 0, (37)

where λ ≥ 0. The arbitrary constants in Nj(y) are obtained from the Fourier
series of the functions from the boundary conditions at y = 0 and y = Ly.
Because there are two arbitrary constants for each function Nj(y), and two
boundary conditions that they must satisfy, it is necessary to solve a 2× 2
system of linear equations for each j. The opposite procedure is followed if
the boundary conditions at y = 0 and y = Ly are homogeneous instead: the
homogeneous boundary conditions are imposed on each Nj(y), and Fourier
series are used to determine the arbitrary constants in each Mj(x). In this
case, the ODEs to be solved are

M ′′
j (x)− λMj(x) = 0, N ′′

j (y) + λNj(y) = 0, (38)

where λ ≥ 0.
Separation of variables can be used, indirectly, to solve time-dependent

inhomogeneous PDE such as

∂u

∂t
= K

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F (x, t), 0 < x < L, t > 0, (39)

with initial conditions (2) and (3). The function F (x, t) is called a source
term or forcing term. By Duhamel’s principle, the solution to this problem
is

u(x, t) = uh(x, t) +
∫ t

0
vτ (x; t− τ) dτ, (40)

where uh(x, t) is the solution to the corresponding homogeneous problem
(1), (2), (3), and vτ (x, t) is a one-parameter family of solutions of the set of
homogeneous problems (1), (3) with initial conditions

vτ (x, 0) = F (x, τ), 0 < x < L. (41)

All of the homogeneous problems needed to solve the original inhomogeneous
problem can be solved using separation of variables.

It should be noted that all of the problems we have considered in this
lecture have homogeneous boundary conditions; that is, either the values of
the solution or certain derivatives of the solution must be equal to zero on
the boundary. If a PDE has inhomogeneous boundary conditions, separation
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of variables cannot be used directly. However, if one can find a function that
satisfies the inhomogeneous boundary conditions and subtract it from the
(unknown) solution, then the difference satisfies the same PDE, albeit with
a source term, and homogeneous boundary conditions. Then, separation
of variables can be applied, in conjunction with Duhamel’s principle if the
problem is time-dependent.

5 Classification of Second-Order PDEs

Consider a general second-order PDE of the form

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ F = 0. (42)

In many cases, the variable y is actually used to denote time, in which case
t is used instead, but we use y for uniformity.

The equation is classified using the sign of the coefficients A, B and C:

hyperbolic if B2 − 4AC > 0
parabolic if B2 − 4AC = 0
elliptic if B2 − 4AC < 0

These names arise from the classification of conic sections from general
quadratic equations of two variables. Based on this classification scheme,
the equation (1) is parabolic.

From this classification scheme, we see that the diffusion equation is
parabolic, the wave equation is hyperbolic, and Laplace’s equation is elliptic.
Note that we are not assuming that the coefficients A, B and C are constant,
so if they do depend on x and y, it is possible that an equation may have
different classifications at different points in its domain.
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