

Audio Signals

Stephen Boyd

ENGR108
Stanford University

September 7, 2025

Acoustic pressure

- ▶ mean atmospheric pressure is around 10^5 N/m^2
- ▶ *acoustic pressure* $p(t)$ is instantaneous pressure minus mean pressure
- ▶ we perceive small fast variations in $p(t)$ as sound
- ▶ $\text{rms}(p)$ corresponds (roughly) to loudness of sound
- ▶ $\text{rms}(p) = 1 \text{ N/m}^2$ is ear-splitting ($\sim 120 \text{ dB SPL}$)
- ▶ $\text{rms}(p) = 10^{-4} \text{ N/m}^2$ is barely audible ($\sim 14 \text{ dB SPL}$)
- ▶ Sound Pressure Level (SPL) of acoustic pressure signal p is $20 \log_{10}(\text{rms}(p)/p_{\text{ref}})$, $p_{\text{ref}} = 2 \times 10^{-5} \text{ N/m}^2$

Vector representation of audio

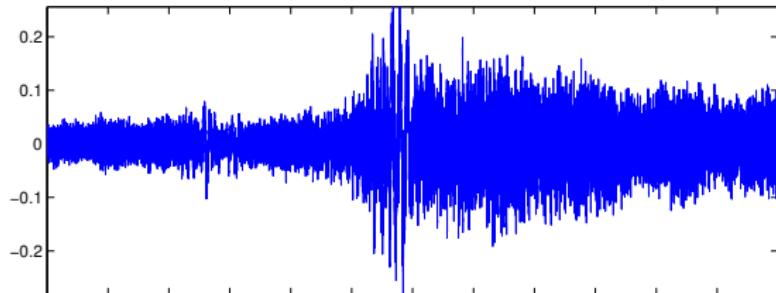
- ▶ vector $x \in \mathbf{R}^N$ represents audio (sound) signal (or recording) over some time interval
- ▶ x_i is (scaled) acoustic pressure at time $t = hi$:

$$x_i = \alpha p(hi), \quad i = 1, \dots, N$$

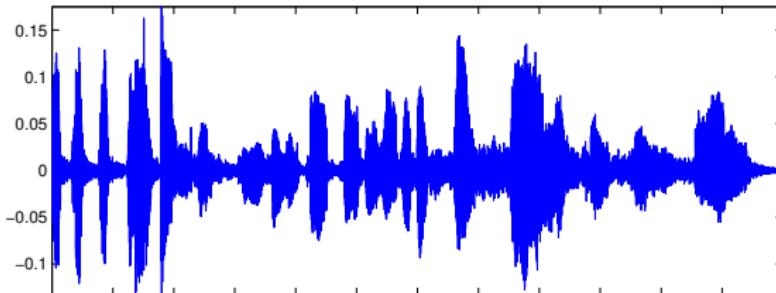
- ▶ x_i is called a *sample*
- ▶ $h > 0$ is the sample time; $1/h$ is the sample rate
- ▶ typical sample rates are $1/h = 44100/\text{sec}$ or $48000/\text{sec}$ ($h \approx 20\mu\text{sec}$)
- ▶ for a 3-minute song, $N \sim 10^7$
- ▶ α is scale factor
- ▶ *stereophonic* audio signal consists of a left and a right audio signal

Examples

Instrumental (play)



Speech (play)



Scaling audio signals

- ▶ if x is an audio signal, what does ax sound like? (a is a number)
- ▶ answer: same as x but louder if $|a| > 1$ and quieter if $|a| < 1$
 - $2x$ sounds noticeably louder than x
 - $(1/2)x$ sounds noticeably quieter than x
 - $10x$ sounds much louder than x
 - $-x$ sounds the same as x
- ▶ a *volume control* simply scales an audio signal
- ▶ for this reason, the scale factor usually doesn't matter
- ▶ example
 - play x
 - play $2x$
 - play $(1/2)x$
 - play $-x$

Linear combinations and mixing

- ▶ suppose x_1, \dots, x_k are k different audio signals with same length
- ▶ form linear combination $y = a_1x_1 + a_2x_2 + \dots + a_kx_k$
- ▶ y sounds like a *mixture* of the audio signals, with relative weights $|a_1|, \dots, |a_k|$
- ▶ forming y is called *mixing*, and x_i are called *tracks*
- ▶ producers do this to produce finished recordings from separate tracks for vocals, instruments, drums, ...
- ▶ coefficients a_1, \dots, a_k are adjusted (by ear) to give a good balance
- ▶ typical number of tracks: $k = 48$

Mixing example

- ▶ tracks
 - drums (play)
 - vocals (play)
 - guitar (play)
 - synthesizer (play)
- ▶ mix 1: $a = (0.25, 0.25, 0.25, 0.25)$ (play)
- ▶ mix 2: $a = (0, 0.7, 0.1, 0.3)$ (play)
- ▶ mix 3: $a = (0.1, 0.1, 0.5, 0.3)$ (play)

Musical tones

- ▶ suppose $p(t)$ is an acoustic signal, with t in seconds
- ▶ it is *periodic* with period T if $p(t + T) = p(t)$ for all t
(in practice, it's good enough for $p(t + T) \approx p(t)$ for t in an interval at least 1/8 second or so)
- ▶ its *frequency* is $f = 1/T$ (in 1/sec of Hertz, Hz)
- ▶ for f in range 100–2000, p is perceived as a *musical tone*
 - frequency f determines *pitch* (or musical note)
 - shape (a.k.a. *waveform*) of p determines *timbre* (quality of sound)

Musical notes

- ▶ $f = 440\text{Hz}$ is middle A
- ▶ one *octave* is doubling of frequency
- ▶ $f = 880\text{Hz}$ is A above middle A; $f = 220\text{Hz}$ is A below middle A
- ▶ each musical *half step* is a factor of $2^{1/12}$ in frequency
- ▶ middle C is frequency $f = 2^{3/12} \times 440 \approx 523.2\text{Hz}$
(C is 3 half-steps above A)
- ▶ in Western music, certain consonant intervals have frequency ratios close to ratios of small integers

Frequency ratios and musical intervals

half steps	name	frequency ratio	
0	unison	$2^{0/12} = 1$	play
1		$2^{1/12} = 1.0595$	
2		$2^{2/12} = 1.1225$	
3	minor 3rd	$2^{3/12} = 1.1892 \approx 6/5$	play
4	major 3rd	$2^{4/12} = 1.2599 \approx 5/4$	
5	perfect 4th	$2^{5/12} = 1.3348 \approx 4/3$	
6		$2^{6/12} = 1.4142$	
7	perfect 5th	$2^{7/12} = 1.4983 \approx 3/2$	play
8		$2^{8/12} = 1.5974$	
9		$2^{9/12} = 1.6818$	
10		$2^{10/12} = 1.7818$	
11		$2^{11/12} = 1.8877$	
12	octave	$2^{12/12} = 2$	play

Periodic signals

- ▶ periodic signal (with period $1/f$, frequency f)

$$p(t) = \sum_{k=1}^K (a_k \cos(2\pi f k t) + b_k \sin(2\pi f k t))$$

- ▶ $k = 1$ terms are called the *fundamental*
- ▶ for $k > 1$, $k - 1$ is called *harmonic* or *overtone*
- ▶ a_k, b_k are *harmonic coefficients*
- ▶ any periodic signal can be approximated this way (Fourier series) with large enough K

Timbre

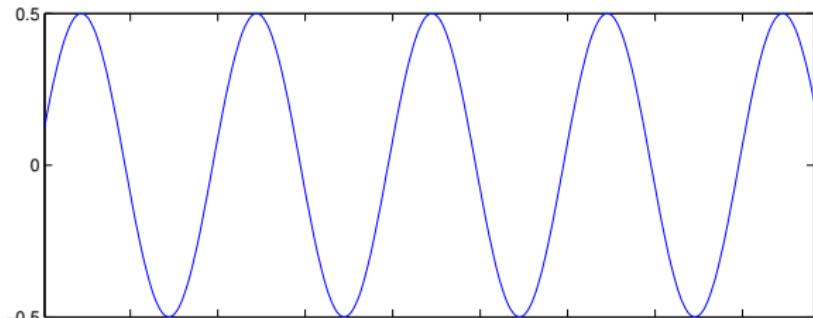
- ▶ timbre (quality of musical tone) is determined by *harmonic amplitudes*

$$c_1 = \sqrt{a_1^2 + b_2^2}, \quad \dots \quad c_K = \sqrt{a_K^2 + b_K^2}$$

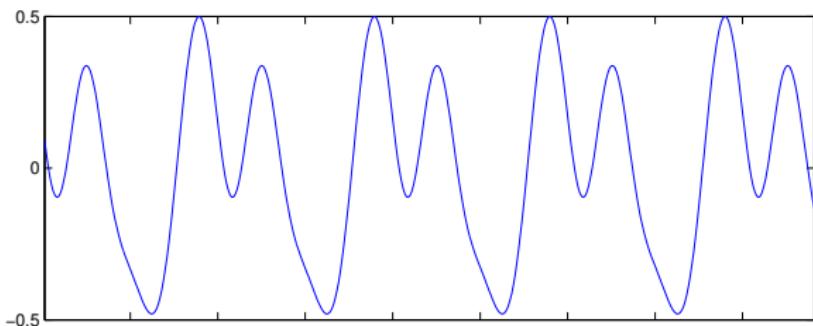
- ▶ $c = (1, 0, \dots, 0)$ (pure sine wave) is heard as pure, boring tone
- ▶ $c = (0.3, 0.4, 0.2, 0.3)$ has same pitch, but sounds ‘richer’
- ▶ with different harmonic amplitudes, can make sounds (sort of) like oboe, violin, horn, piano, ...

Various timbres, same pitch

pure 220hz tone, $c = 1$ (play)

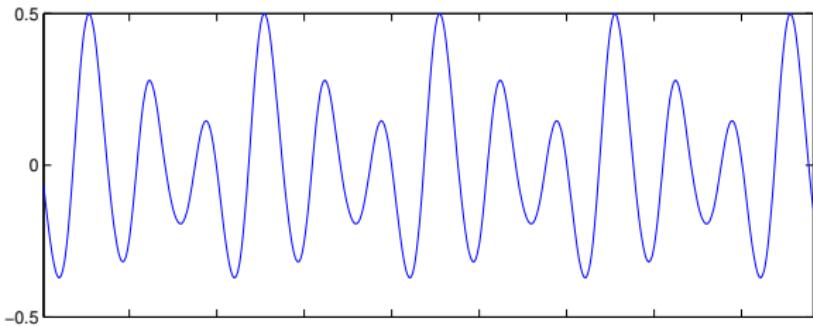


$c = (0.7, 0.6, 0.3, 0.04)$ (play)



Various timbres, same pitch

$c = (0.21, 0.4, 0.9, 0.05, 0.05, 0.05)$ (play)



$c = (0.3, \dots, 0.3) \in \mathbf{R}^{10}$ (play)

