

Handwritten Digit Classification

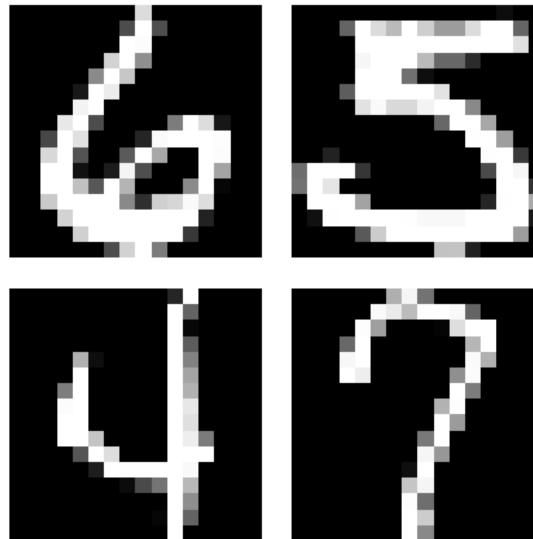
Stephen Boyd
ENGR108
Stanford University

September 7, 2025

Outline

Classification

k -means


Boolean classification

Multiclass classification

Classification with random features

Handwritten digit classification

- ▶ goal is to automatically determine what a handwritten digit image is (i.e., 0, 1, . . . , 8, or 9?)

Classifier

- ▶ images are 16×16 pixels, represented as 256-vectors
- ▶ values in $[0, 1]$ (0 is black, 1 is white)
- ▶ images were first de-slanted and size normalized
- ▶ our classifier is a function $\hat{f} : \mathbf{R}^{256} \rightarrow \{0, 1, \dots, 9\}$
(called multiclass or in this case 10-way classification)
- ▶ our guess is $\hat{y} = \hat{f}(x)$ for image x
- ▶ our classifier is wrong when $\hat{y} \neq y$

Data set

- ▶ NIST data from US Postal Service
- ▶ training set has $N = 7291$ images
 - we'll use this data set to develop our classifiers
- ▶ test set has $N^{\text{test}} = 2007$ images
 - we'll use this data set to test/judge our classifiers
- ▶ we'll look at error on training set and on test set

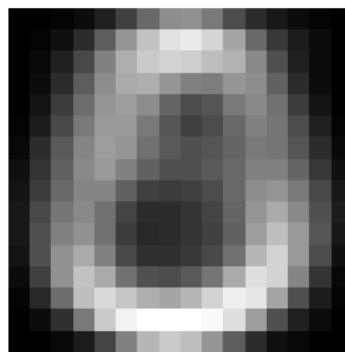
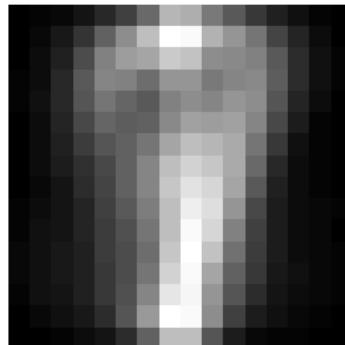
Outline

Classification

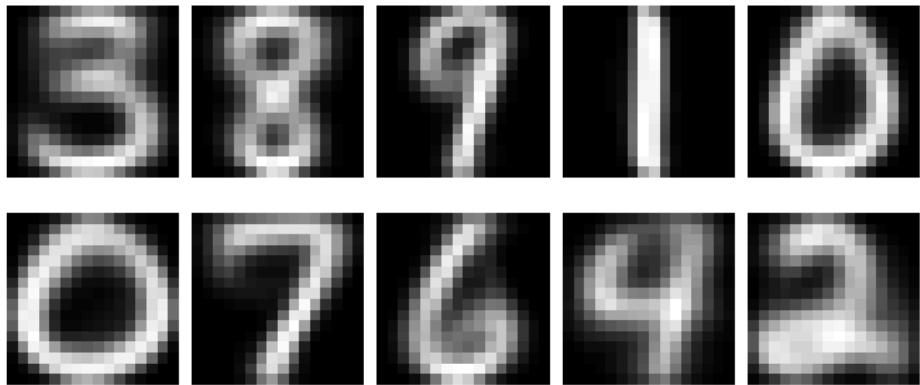
k-means

Boolean classification

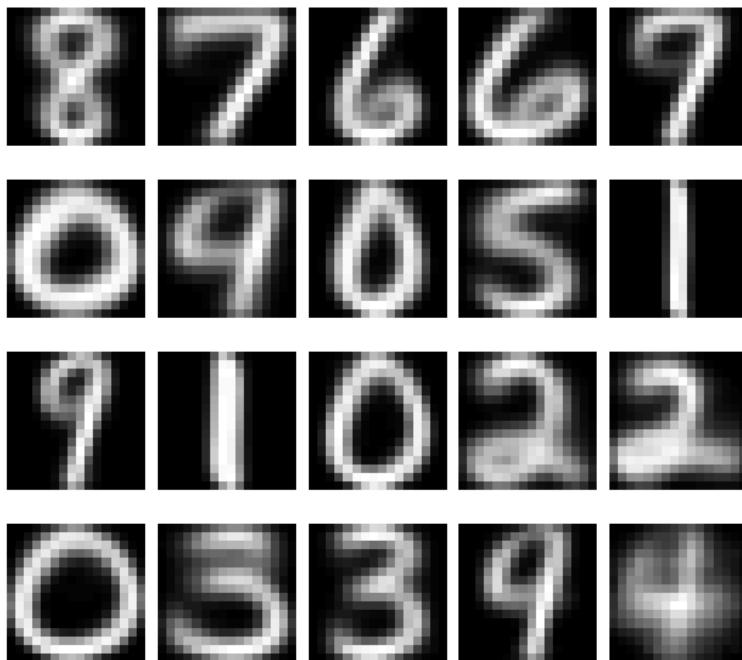
Multiclass classification



Classification with random features

k-means


k-means

- ▶ start with a collection of image 256-vectors x_1, \dots, x_N
- ▶ run *k*-means algorithm to cluster into *k* groups, 10 times with random initial centroids
- ▶ use best of these 10 (in mean-square distance to closest centroid)
- ▶ centroids/representatives z_1, \dots, z_k can be viewed as images


Centroids, $k = 2$

Centroids, $k = 10$

Centroids, $k = 20$

Classification via k -means

- ▶ label $k = 20$ centroids by hand
- ▶ classify new image by label of nearest centroid
- ▶ classification error rate (on test set): 24%

Classification via k -means

confusion matrix:

true ↓ predicted →

	0	1	2	3	4	5	6	7	8	9
0	338	0	2	3	6	0	9	0	0	1
1	0	253	0	1	4	0	2	0	0	4
2	7	1	131	10	29	1	3	2	13	1
3	4	0	1	143	3	6	1	1	6	1
4	1	4	4	0	103	0	1	4	2	81
5	10	0	0	50	8	78	7	0	0	7
6	6	0	2	0	4	2	154	0	1	1
7	0	3	0	0	6	0	0	113	1	24
8	5	2	5	16	10	7	0	1	107	13
9	0	2	0	0	18	1	0	43	3	110

Outline

Classification

k -means

Boolean classification

Multiclass classification

Classification with random features

Boolean classification

13

Boolean classifier

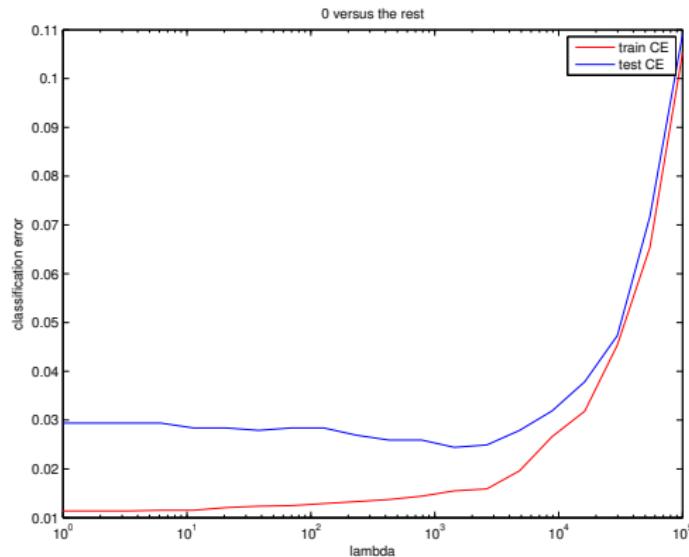
- ▶ a simpler problem: determine if an image x is digit k or not digit k
- ▶ we use label $y_i = 1$ if x_i is digit k and $y_i = -1$ if not
- ▶ classifier will have form

$$\hat{y} = \mathbf{sign}(w^T x + v)$$

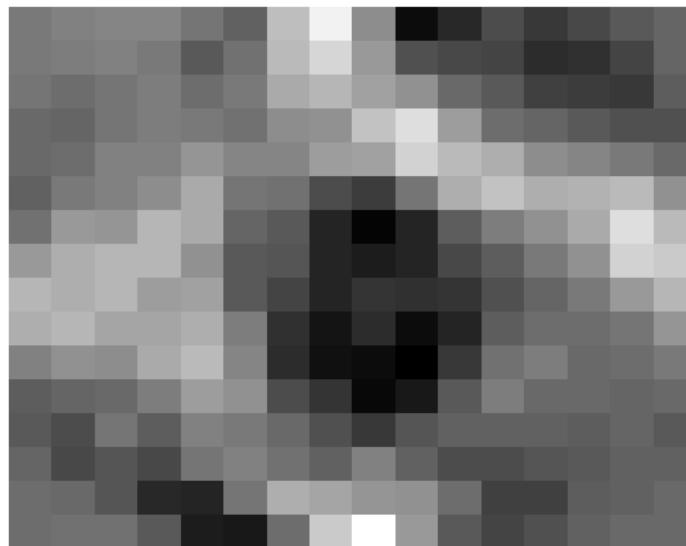
w is weight 256-vector, v is offset

- ▶ we'll use training set to choose w and v , and test the classifier on test data set

Least squares Boolean classifier


- ▶ want w, v for which $y_i \approx \hat{y}_i = \mathbf{sign}(w^T x_i + v) = \mathbf{sign}(\tilde{y}_i)$
- ▶ choose w, v to minimize

$$\sum_{i=1}^N (\tilde{y}_i - y_i)^2 + \lambda \|w\|^2 = \|X^T w + v \mathbf{1} - y^d\|^2 + \lambda \|w\|^2$$


- ▶ $X = [x_1 \cdots x_N]$ is matrix of training image vectors
- ▶ $y^d = (y_1, \dots, y_N)$ is N -vector of labels
- ▶ $\lambda > 0$ is regularization parameter

Least squares Boolean classifier

classification error versus λ for predicting the digit 0

Weight vector

Outline

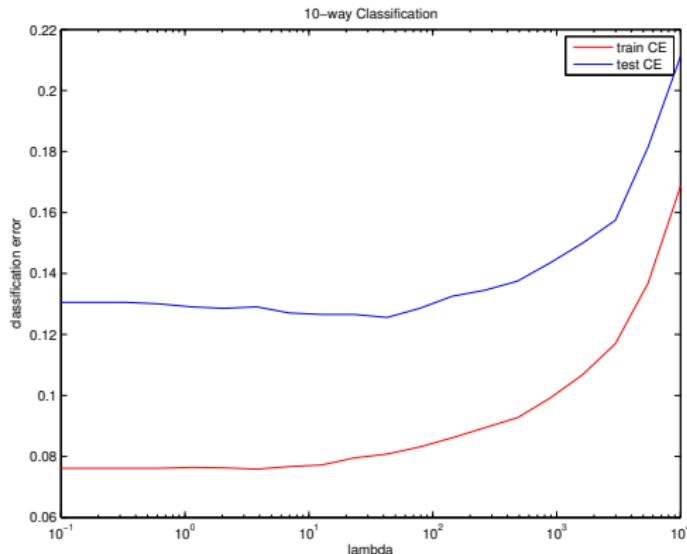
Classification

k -means

Boolean classification

Multiclass classification

Classification with random features


Multiclass classification

10-way classification

- ▶ let w_i, v_i be weight vector, offset for Boolean classification of digit i
- ▶ for image x , $\tilde{y}_i = w_i^T x + v_i$
- ▶ the larger \tilde{y}_i is, the more confident we are that image is digit i
- ▶ choose $\hat{y} = \text{argmax}_i(\tilde{y}_i) = \text{argmax}_i(w_i^T x + v_i)$
- ▶ use the same regularization parameter λ for each digit i
- ▶ choose λ so that the total classification error *on test set* is small

Example

multi-class classification error versus λ

with $\lambda = 50$, test classification error is about 13%

Example

test confusion matrix

true ↓ predicted →

	0	1	2	3	4	5	6	7	8	9
0	348	2	0	1	3	1	3	0	0	1
1	0	256	0	2	3	0	1	0	1	1
2	8	3	160	7	9	1	1	1	8	0
3	5	0	3	140	2	8	0	2	3	3
4	3	6	4	0	173	0	3	1	0	10
5	10	1	0	20	2	120	0	1	1	5
6	3	1	4	0	5	5	151	0	1	0
7	2	1	1	1	6	0	0	131	0	5
8	10	3	2	14	4	7	1	2	119	4
9	0	3	0	1	7	0	0	7	2	157

Outline

Classification

k -means

Boolean classification

Multiclass classification

Classification with random features

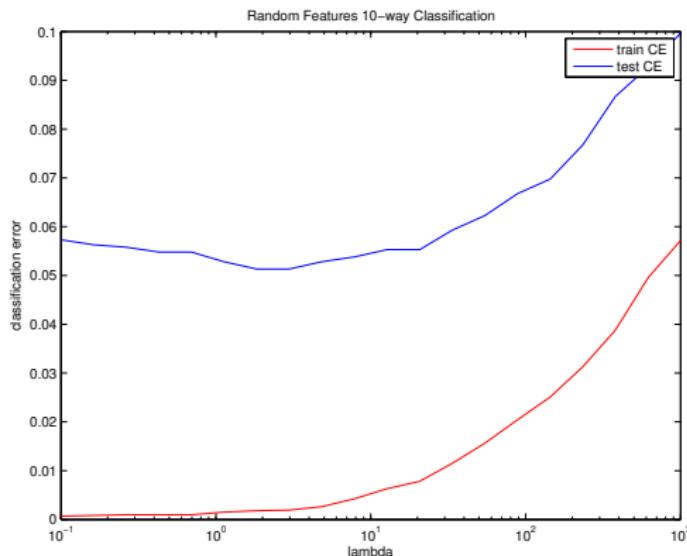
Classification with random features

22

Doing even better

- ▶ in classes you'll take later (AI, statistics), you'll see (and construct) way better classifiers
- ▶ we'll look at a simple example here

Generating random features


- ▶ generate a random 2000×256 matrix R with entries $+1$ or -1
- ▶ scale R by $1/\sqrt{256}$, so each row has norm 1
- ▶ create 2000 new features \tilde{x} from original x via

$$\tilde{x}_i = \max\{Rx, 0\}$$

- ▶ now do least squares classification with feature 2256-vectors (x_i, \tilde{x}_i)

Example

multi-class classification error versus λ

with $\lambda = 1$, test classification error is about 5%

Example

test confusion matrix

true ↓ predicted →

	0	1	2	3	4	5	6	7	8	9
0	352	0	3	0	2	0	1	0	0	1
1	0	256	0	0	4	0	3	1	0	0
2	1	0	186	3	2	0	1	1	4	0
3	1	0	4	150	0	7	0	0	3	1
4	0	1	3	0	188	0	1	0	1	6
5	2	0	0	3	0	150	0	0	1	4
6	3	0	3	0	2	1	161	0	0	0
7	0	0	1	0	6	0	0	138	1	1
8	4	0	3	3	0	1	2	0	153	0
9	0	0	0	0	4	1	0	1	1	170