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Handwritten digit classification

» goal is to automatically determine what a handwritten digit image is
(ie,0,1,...,8, 0r97)
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Classifier

> images are 16 x 16 pixels, represented as 256-vectors

> values in [0, 1] (0 is black, 1 is white)

» images were first de-slanted and size normalized

> our classifier is a function f : R?% — {0,1,...,9}
(called multiclass or in this case 10-way classification)

> our guess is § = f(z) for image

» our classifier is wrong when g # y

Classification



Data set

» NIST data from US Postal Service
» training set has N = 7291 images
— we'll use this data set to develop our classifiers

> test set has Nt = 2007 images
— we'll use this data set to test/judge our classifiers

> we'll look at error on training set and on test set
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k-means

> start with a collection of image 256-vectors z1,...,xN

» run k-means algorithm to cluster into k groups, 10 times with
random initial centroids

> use best of these 10 (in mean-square distance to closest centroid)
> centroids/representatives z1, ..., z; can be viewed as images

k-means



Centroids, k =2
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Centroids, k£ = 10
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Classification via k-means

» label k = 20 centroids by hand
» classify new image by label of nearest centroid

> classification error rate (on test set): 24%

k-means
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Classification via k-means

confusion matrix:

true | predicted —
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Boolean classification

Boolean classification
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Boolean classifier

» a simpler problem: determine if an image x is digit k or not digit k&
> we use label y; = 1 if x; is digit k¥ and y; = —1 if not
» classifier will have form

§ = sign(w’z + v)

w is weight 256-vector, v is offset

» we'll use training set to choose w and v, and test the classifier on
test data set
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Least squares Boolean classifier

» want w, v for which y; ~ ; = sign(w’z; + v) = sign(7;)

» choose w,v to minimize

N
S — i) + Al = X7+ 01— 4 + Al
i=1
» X = [z1---xpy] is matrix of training image vectors
> 4 (yl, ..,yn) is N-vector of labels
> A >

0 is regularization parameter
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Least squares Boolean classifier

classification error versus A for predicting the digit 0
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Boolean classification

0 versus the rest
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Boolean classification

Weight vector
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Multiclass classification

Multiclass classification
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10-way classification

let w;, v; be weight vector, offset for Boolean classification of digit ¢
for image x, §; = wl'z +v;

the larger g; is, the more confident we are that image is digit ¢
choose i = argmax;(7;) = argmax;(wl'z + v;)

use the same regularization parameter A\ for each digit ¢
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choose ) so that the total classification error on test set is small
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Example

multi-class classification error versus A\

10-way Classification
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with XA = 50, test classification error is about 13%
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Example

test confusion matrix

true | predicted —
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Classification with random features

Classification with random features

22



Doing even better

> in classes you'll take later (Al, statistics), you'll see (and construct)
way better classifiers

» we'll look at a simple example here

Classification with random features
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Generating random features

» generate a random 2000 x 256 matrix R with entries +1 or —1
» scale R by 1/4/256, so each row has norm 1

» create 2000 new features  from original x via
Z; = max{Rz,0}

> now do least squares classification with feature 2256-vectors (x;, Z;)

Classification with random features
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Example

multi-class classification error versus A\

Random Features 10-way Classification
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with A = 1, test classification error is about 5%
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Example

test confusion matrix
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