Images
Jenny Hong Ahmed Bou-Rabee Stephen Boyd

ENGR108
Stanford University

September 7, 2025

Outline

Representation

Representation

Monochrome images

» a.k.a. monochrome or gray-scale image

» image represented by its brightness values at an array of m x n
locations (pixels)

> typical sizes

— thumbnail: 16 x 16, 64 x 64, 128 x 128
— 4K x 6K = 24M pixels
— HD is 1280 x 720 pixels

> can represent by an m x n matrix X or by a single vector x € R™"
with some encoding of the pixel locations, e.g.,

(this stacks the columns of X, from left to right)

Representation

Brightness values

» z; is brightness of pixel ¢

» typically 0 < x; <1 where 0 is black and 1 is white

> values outside [0, 1] are clipped (so x; < 0 shows up as black)
» if x is an image, —x is completely black

» negative image is given by 1 — x

> avg(x) is average intensity (brightness) of image

» std(x) corresponds to image constrast

Representation

Scaling, shifting, and adding images

» what does image
y =a(z —avg(x)l) + (avg(z) + b)1 = ax + 1
(c=(1—a)avg(z) + b) look like?

— a scale contrast
— b shifts brightness

» y; =z is called y-correction (widely used)

» if x and y are images, x + y is perceived as composite or
combination of the images (and isn’t natural, except in some cases)

Representation

Examples

original original + 0.5 (original — 0.4) * 10
g | V- o SRS .75 =
gy T

L AR

4 ~ ! iy /7

- Wy
{ Vit o Vi
| W ’

y » ol
[v > X
» el

Representation

Examples

pumpkins flowers (pumpkins+flowers)/2

Representation

Color images

» humans perceive 3 colors, which can be represented in different ways
(e.g.. RGB, CMYK)

» most common is RGB (Red-Green-Blue)

» color represented as a 3-vector (r,g,b), with r, g, b between 0 and 1
- (1,0,0) is bright red
- (1,0,1) is bright purple
- (0.2,0.2,0.2) is a gray

> m X n image given by 3 m x n matrices or one vector z € R®™"

Representation

Colors

» (1,0,0), (0,1,0), (0,0,1)
> (1,0,1)

> (0.2,0.2,0.2), (0.5,0.5,0.5),

Representation

Representation

N

original

Color images

10

Converting color to monochrome

» color pixel values converted to monochrome using y; = w? (r;, g;, b;)
— obvious choice: w = (1/3,1/3,1/3)

— another common choice: w = (0.299,0.587,0.114)
— other choices used for special effects

Representation

11

Representation

Converting color to monochrome

original equal weights

12

Video

> video is represented as a sequence of images captured periodically
» each image is called a frame

» typical frame rates: 24, 30, or 60 frames per second

Representation 13

Linear operations

Linear operations

Outline

14

Linear image mappings

» for y and = images, linear mapping y = Ax can represent many
common operations on images

color to monochrome conversion

color correction

any mapping from original to distorted pixel locations (e.g., flipping,
stretching)

blurring

changing to lower or higher resolution

vertical and horizontal differencing

Linear operations 15

Moving pixels

» pixel at location ¢ in image y is the pixel at value j = d(7) in image x
> d(i) gives distortion map
> examples: flipping, zooming, rotating, shifting, key correction

> some issues/details:

— we'll need to approximate the location of the pixels
— we need to do something with y pixels that don’t correspond to any
x pixels

» y = Ax, where ith row of A is eg(i)
(or 0, if y; doesn't correspond to any z pixel)

Linear operations 16

original image

Linear operations

Flipping images

horizontal flip

vertical flip

17

Blurring images

> represent image as m X n matrix X

v

represent blur point spread function as p X q matrix B
» blurred image is given by Y with

Y = E Xi—kt1,j—1+1Bk,
Kl

where

— the sum is over all integers k,
— we interpret X;; and By, as zero when the indices are out of range

» called 2-D convolution of X and B, denoted Y = X * B or
Y=A%B

» blurring is model of effects of optical imperfections, motion blur, ...

Linear operations 18

original image

Linear operations

Blurring images

blurred image

point spread function

19

Horizontal and vertical differences

> X is m x n image (matrix), x its mn-vector representation

v

horizontal first order difference is m x (n — 1) matrix Y with
Yij=X,j1— Xy, t=1,....om, j=1,...,n-1
> vertical first order difference is (m — 1) x n matrix Z with
Zij =X — X5, i=1,....m—-1, j=1,...,n
» these are linear operations, so we have
y = Dhovizg, 5 — Dverty,

for an m(n — 1)-matrix D" and an (m — 1)n-matrix Dvert

» each row contains one +1 and one —1

Linear operations

20

Horizontal and vertical differences

(shown for 3 x 3 image)

-1 +1
-1 +1
horiz _ -1 +1
b o -1 +1
-1 +1
L -1
-1 +1
-1 +1
vert _ —1 +1
b N -1 +1
-1 +1
L -1

Linear operations

+1

+1

21

Horizontal and vertical differences

original image horizontal difference vertical difference

Linear operations

22

Dirichlet energy

» the Dirichlet energy (also called Laplacian) is

D(JZ) _ HDhorizx||2+”Dvertx”2
m—1n—1
= D> (Kipry = Xiy)* + (Xiga
i=1 j=1

(we also write D(X))
» D(X) is a measure of roughness of the image X

— D(X) is small when the image is smooth
— D(X) = 0 only if the image is constant

> D(X) is used as a regularizer

Linear operations

- Xi;)%)

23

In-painting

In-painting

Outline

24

In-painting

> we are given an image with some pixels values unknown

» in-painting means to guess values of the unknown pixels so the
recovered image looks good or natural

» in example below, unknown values are shown as black

In-painting

25

Least-squares in-painting

» corrupted/damaged image is given by m x n matrix X"
> K C{l,...,m} x{1,...,n} are the indices of known pixels

> we need to choose an image X that agrees with the given image on

known pixels: X;; = X{9™, (i,5) € K

» we'll choose X to minimize D(X), the sum square deviation of all
pixel values from their neighbors (small D(X) gives a smooth image)

> a least-squares problem (variables are unknown pixel values)

In-painting 26

original image

In-painting

In-painting

damaged image

inpainted image

27

Image de-blurring

Image de-blurring

Outline

28

Corrupted image

» 1 is a linear function of z'™"¢, with noise:
y — Axtrue +’U

y is the corrupted image, which we have

x'U€ is the original image, which we want to guess/recover

A is a (known) matrix, often a blurring operator

>
>
» v is a noise, which we assume is small
>
» image de-blurring is guessing x'"u¢

>

even if A is invertible, the guess x = A~y could look very bad

Image de-blurring

29

Least-squares de-blurring

» |east-squares de-blurring: choose x to minimize
| Az — y[|* + XD(x)

> first term is ||v]|?
> X\ > 0 is a regularization parameter

— large A makes z smooth
— small X\ makes || Az — y||* small

Image de-blurring

30

original image

De-blurring example

corrupted image deblurred image with lambda = 0.03

Image de-blurring

31

De-blurring: Effect of regulariziton

lambda = 0.0003 lambda = 0.03 lambda = 3

Image de-blurring

32

	Representation
	Linear operations
	In-painting
	Image de-blurring

