
Images

Jenny Hong Ahmed Bou-Rabee Stephen Boyd

ENGR108
Stanford University

September 7, 2025



Outline

Representation

Linear operations

In-painting

Image de-blurring

Representation 2



Monochrome images

▶ a.k.a. monochrome or gray-scale image

▶ image represented by its brightness values at an array of m× n
locations (pixels)

▶ typical sizes

– thumbnail: 16× 16, 64× 64, 128× 128
– 4K× 6K = 24M pixels
– HD is 1280× 720 pixels

▶ can represent by an m× n matrix X or by a single vector x ∈ Rmn

with some encoding of the pixel locations, e.g.,

Xij = xk, k = m(j − 1) + i, k = 1, . . . ,mn

(this stacks the columns of X, from left to right)

Representation 3



Brightness values

▶ xi is brightness of pixel i

▶ typically 0 ≤ xi ≤ 1 where 0 is black and 1 is white

▶ values outside [0, 1] are clipped (so xi < 0 shows up as black)

▶ if x is an image, −x is completely black

▶ negative image is given by 1− x

▶ avg(x) is average intensity (brightness) of image

▶ std(x) corresponds to image constrast

Representation 4



Scaling, shifting, and adding images

▶ what does image

y = a(x− avg(x)1) + (avg(x) + b)1 = ax+ c1

(c = (1− a)avg(x) + b) look like?

– a scale contrast
– b shifts brightness

▶ yi = xγ
i is called γ-correction (widely used)

▶ if x and y are images, x+ y is perceived as composite or
combination of the images (and isn’t natural, except in some cases)

Representation 5



Examples

original original + 0.5 (original − 0.4) * 10

Representation 6



Examples

pumpkins flowers (pumpkins+flowers)/2

Representation 7



Color images

▶ humans perceive 3 colors, which can be represented in different ways
(e.g., RGB, CMYK)

▶ most common is RGB (Red-Green-Blue)

▶ color represented as a 3-vector (r, g, b), with r, g, b between 0 and 1

– (1, 0, 0) is bright red
– (1, 0, 1) is bright purple
– (0.2, 0.2, 0.2) is a gray

▶ m× n image given by 3 m× n matrices or one vector x ∈ R3mn

Representation 8



Colors

▶ (1,0,0), (0,1,0), (0,0,1)

▶ (1,1,0), (0,1,1), (1,0,1)

▶ (0.2,0.2,0.2), (0.5,0.5,0.5), (0.75,0.75,0.75)

Representation 9



Color images

original red

green blue

Representation 10



Converting color to monochrome

▶ color pixel values converted to monochrome using yi = wT (ri, gi, bi)

– obvious choice: w = (1/3, 1/3, 1/3)
– another common choice: w = (0.299, 0.587, 0.114)
– other choices used for special effects

Representation 11



Converting color to monochrome

original equal weights

weights: 0.2, 0.5, 0.3 weights: 0.6, −0.4, 0.8

Representation 12



Video

▶ video is represented as a sequence of images captured periodically

▶ each image is called a frame

▶ typical frame rates: 24, 30, or 60 frames per second

Representation 13



Outline

Representation

Linear operations

In-painting

Image de-blurring

Linear operations 14



Linear image mappings

▶ for y and x images, linear mapping y = Ax can represent many
common operations on images

– color to monochrome conversion
– color correction
– any mapping from original to distorted pixel locations (e.g., flipping,

stretching)
– blurring
– changing to lower or higher resolution
– vertical and horizontal differencing

Linear operations 15



Moving pixels

▶ pixel at location i in image y is the pixel at value j = d(i) in image x

▶ d(i) gives distortion map

▶ examples: flipping, zooming, rotating, shifting, key correction

▶ some issues/details:

– we’ll need to approximate the location of the pixels
– we need to do something with y pixels that don’t correspond to any

x pixels

▶ y = Ax, where ith row of A is eTd(i)
(or 0, if yi doesn’t correspond to any x pixel)

Linear operations 16



Flipping images

original image horizontal flip vertical flip

Linear operations 17



Blurring images

▶ represent image as m× n matrix X

▶ represent blur point spread function as p× q matrix B

▶ blurred image is given by Y with

Yij =
∑
k,l

Xi−k+1,j−l+1Bk,l

where

– the sum is over all integers k, l
– we interpret Xij and Bk,l as zero when the indices are out of range

▶ called 2-D convolution of X and B, denoted Y = X ∗B or
Y = A ⋆ B

▶ blurring is model of effects of optical imperfections, motion blur, . . .

Linear operations 18



Blurring images

original image blurred image point spread function

Linear operations 19



Horizontal and vertical differences

▶ X is m× n image (matrix), x its mn-vector representation

▶ horizontal first order difference is m× (n− 1) matrix Y with

Yij = Xi,j+1 −Xi,j , i = 1, . . . ,m, j = 1, . . . , n− 1

▶ vertical first order difference is (m− 1)× n matrix Z with

Zij = Xi+1,j −Xi,j , i = 1, . . . ,m− 1, j = 1, . . . , n

▶ these are linear operations, so we have

y = Dhorizx, z = Dvertx

for an m(n− 1)-matrix Dhoriz and an (m− 1)n-matrix Dvert

▶ each row contains one +1 and one −1

Linear operations 20



Horizontal and vertical differences

(shown for 3× 3 image)

Dhoriz =


−1 +1

−1 +1
−1 +1

−1 +1
−1 +1

−1 +1



Dvert =


−1 +1

−1 +1
−1 +1

−1 +1
−1 +1

−1 +1



Linear operations 21



Horizontal and vertical differences

original image horizontal difference vertical difference

Linear operations 22



Dirichlet energy

▶ the DIrichlet energy (also called Laplacian) is

D(x) = ∥Dhorizx∥2 + ∥Dvertx∥2

=

m−1∑
i=1

n−1∑
j=1

(
(Xi+1,j −Xi,j)

2 + (Xi,j+1 −Xi,j)
2
)

(we also write D(X))

▶ D(X) is a measure of roughness of the image X

– D(X) is small when the image is smooth
– D(X) = 0 only if the image is constant

▶ D(X) is used as a regularizer

Linear operations 23



Outline

Representation

Linear operations

In-painting

Image de-blurring

In-painting 24



In-painting

▶ we are given an image with some pixels values unknown

▶ in-painting means to guess values of the unknown pixels so the
recovered image looks good or natural

▶ in example below, unknown values are shown as black

In-painting 25



Least-squares in-painting

▶ corrupted/damaged image is given by m× n matrix Xcorr

▶ K ⊂ {1, . . . ,m} × {1, . . . , n} are the indices of known pixels

▶ we need to choose an image X that agrees with the given image on
known pixels: Xij = Xcorr

ij , (i, j) ∈ K

▶ we’ll choose X to minimize D(X), the sum square deviation of all
pixel values from their neighbors (small D(X) gives a smooth image)

▶ a least-squares problem (variables are unknown pixel values)

In-painting 26



In-painting

original image damaged image inpainted image

In-painting 27



Outline

Representation

Linear operations

In-painting

Image de-blurring

Image de-blurring 28



Corrupted image

▶ y is a linear function of xtrue, with noise:

y = Axtrue + v

▶ y is the corrupted image, which we have

▶ xtrue is the original image, which we want to guess/recover

▶ v is a noise, which we assume is small

▶ A is a (known) matrix, often a blurring operator

▶ image de-blurring is guessing xtrue

▶ even if A is invertible, the guess x = A−1y could look very bad

Image de-blurring 29



Least-squares de-blurring

▶ least-squares de-blurring: choose x to minimize

∥Ax− y∥2 + λD(x)

▶ first term is ∥v∥2
▶ λ > 0 is a regularization parameter

– large λ makes x smooth
– small λ makes ∥Ax− y∥2 small

Image de-blurring 30



De-blurring example

original image corrupted image deblurred image with lambda = 0.03

Image de-blurring 31



De-blurring: Effect of regulariziton

lambda = 0.0003 lambda = 0.03 lambda = 3

Image de-blurring 32


	Representation
	Linear operations
	In-painting
	Image de-blurring

