

Portfolio Optimization

Stephen Boyd

EE103
Stanford University

September 7, 2025

Outline

Return and risk

Portfolio investment

Portfolio optimization

Return of an asset over one period

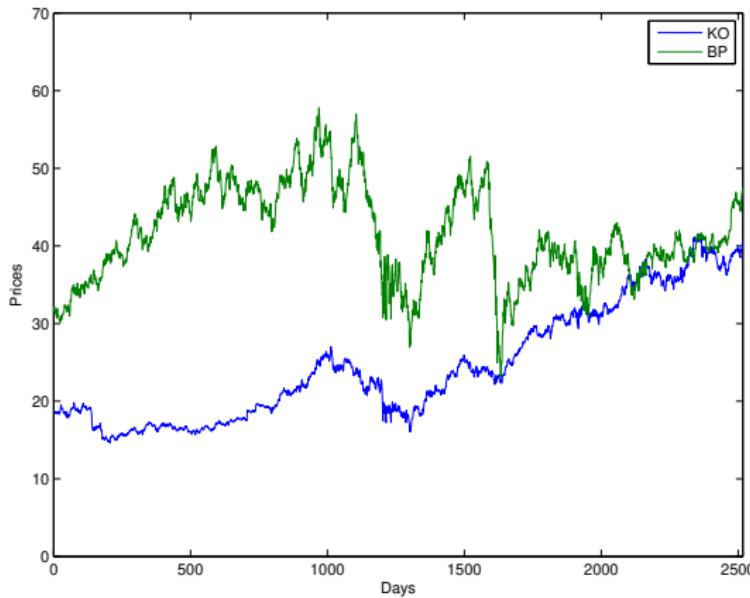
- ▶ asset can be stock, bond, real estate, commodity, ...
- ▶ invest in a single asset over period (quarter, week, day, ...)
- ▶ buy q shares at price p (at beginning of investment period)
- ▶ $h = pq$ is dollar value of holdings
- ▶ sell q shares at new price p^+ (at end of period)
- ▶ profit is $qp^+ - qp = q(p^+ - p) = \frac{p^+ - p}{p}h$
- ▶ define **return** $r = \frac{p^+ - p}{p} = \frac{\text{profit}}{\text{investment}}$
- ▶ profit = rh
- ▶ example: invest $h = \$1000$ over period, $r = +0.03$: profit = $\$30$

Short positions

- ▶ basic idea: holdings h and share quantities q are **negative**
- ▶ called *shorting* or *taking a short position on* the asset (h or q positive is called a *long position*)
- ▶ how it works:
 - you borrow q shares at the beginning of the period and sell them at price p
 - at the end of the period, you have to buy q shares at price p^+ to return them to the lender
- ▶ all formulas still hold, e.g., $\text{profit} = rh$
- ▶ example: invest $h = -\$1000$, $r = -0.05$: $\text{profit} = +\$50$
- ▶ no limit to how much you can lose when you short assets
- ▶ normal people (and mutual funds) don't do this; hedge funds do

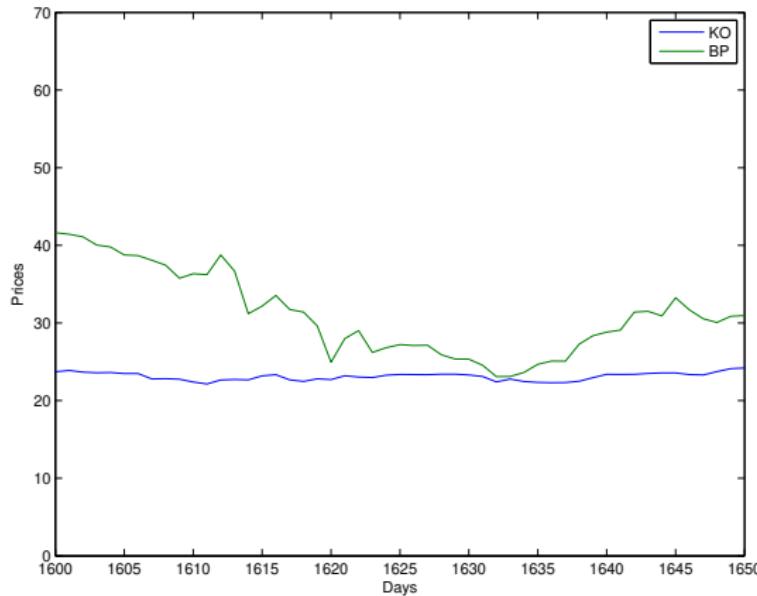
Examples

prices of BP (BP) and Coca-Cola (KO) for last 10 years



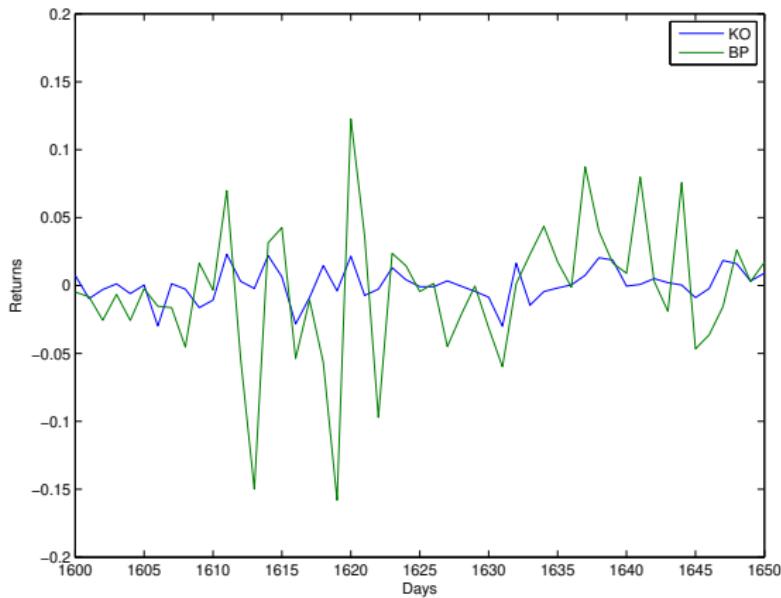
Examples

zoomed in to 10 weeks



Examples

returns over the same period



Return and risk

- ▶ suppose r is time series (vector) of returns
- ▶ **average return** or just **return** is $\text{avg}(r)$
- ▶ **risk** is $\text{std}(r)$
- ▶ these are the per-period return and risk

Annualized return and risk

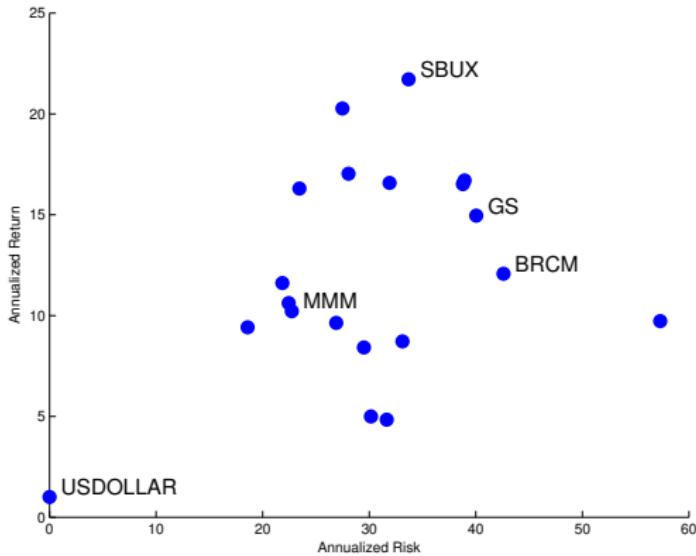
- ▶ mean return and risk are often expressed in **annualized form** (i.e., per year)
- ▶ if there are P trading periods per year
 - annualized return = $P \text{ avg}(r)$
 - annualized risk = $\sqrt{P} \text{ std}(r)$

(the squareroot in risk annualization comes from the assumption that the fluctuations in return around the mean are independent)

- ▶ if returns are daily, with 250 trading days in a year
 - annualized return = $250 \text{ avg}(r)$
 - annualized risk = $\sqrt{250} \text{ std}(r)$

Risk-return plot

- ▶ annualized risk versus annualized return of various assets
- ▶ up (high return) and left (low risk) is good



Outline

Return and risk

Portfolio investment

Portfolio optimization

Portfolio of assets

- ▶ n assets
- ▶ n -vector h_t is dollar value holdings of the assets
- ▶ total portfolio value: $V_t = \mathbf{1}^T h_t$ (we assume positive)
- ▶ $w_t = (1/\mathbf{1}^T h_t)h_t$ gives **portfolio weights** or **allocation** (fraction of total portfolio value)
- ▶ $\mathbf{1}^T w_t = 1$

Examples

- ▶ $(h_3)_5 = -1000$ means you short asset 5 in investment period 3 by \$1,000
- ▶ $(w_2)_4 = 0.20$ means 20% of total portfolio value in period 2 is invested in asset 4
- ▶ $w_t = (1/n, \dots, 1/n)$, $t = 1, \dots, T$ means total portfolio value is equally allocated across assets in all investment periods

Portfolio return and risk

- ▶ asset returns in period t given by n -vector \tilde{r}_t
- ▶ dollar profit (increase in value) over period t is $\tilde{r}_t^T h_t = V_t \tilde{r}_t^T w_t$
- ▶ portfolio return (fractional increase) over period t is

$$\frac{V_{t+1} - V_t}{V_t} = \frac{V_t(1 + \tilde{r}_t^T w_t) - V_t}{V_t} = \tilde{r}_t^T w_t$$

- ▶ $r_t = \tilde{r}_t^T w_t$ is called **portfolio return** in period t
- ▶ r is T -vector of portfolio returns
- ▶ $\text{avg}(r)$ is portfolio return (over periods $t = 1, \dots, T$)
- ▶ $\text{std}(r)$ is portfolio risk (over periods $t = 1, \dots, T$)

Compounding and re-investment

- ▶ $V_{T+1} = V_1(1 + r_1)(1 + r_2) \cdots (1 + r_T)$
- ▶ product here is called **compounding**
- ▶ for $|r_t|$ small (say, ≤ 0.01) and T not too big,

$$V_{T+1} \approx V_1(1 + r_1 + \cdots + r_T) = V_1(1 + T \mathbf{avg}(r))$$

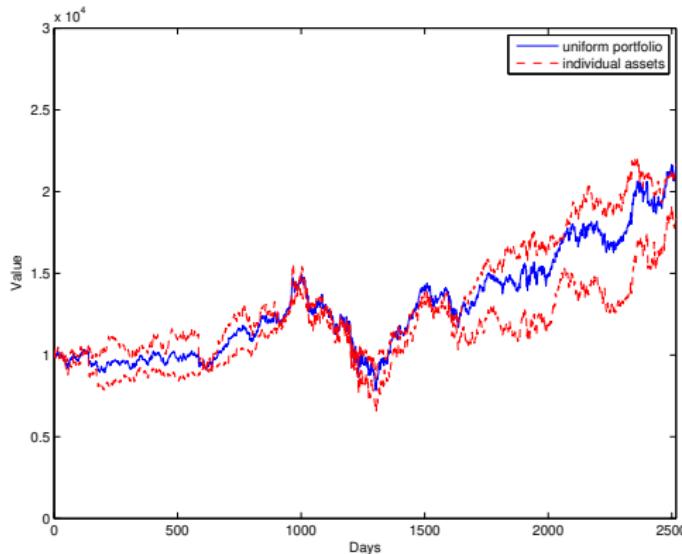
- ▶ so high average return corresponds to high final portfolio value
- ▶ $V_t \leq 0$ (or some small value like $0.1V_1$) called **going bust** or **ruin**

Constant weight portfolio

- ▶ constant weight vector w , i.e., $w_t = w$ for $t = 1, \dots, T$
- ▶ requires **rebalancing** to weight w after each period
- ▶ define $T \times n$ asset returns matrix R with rows \tilde{r}_t^T
- ▶ so R_{tj} is return of asset j in period t
- ▶ then $r = Rw$

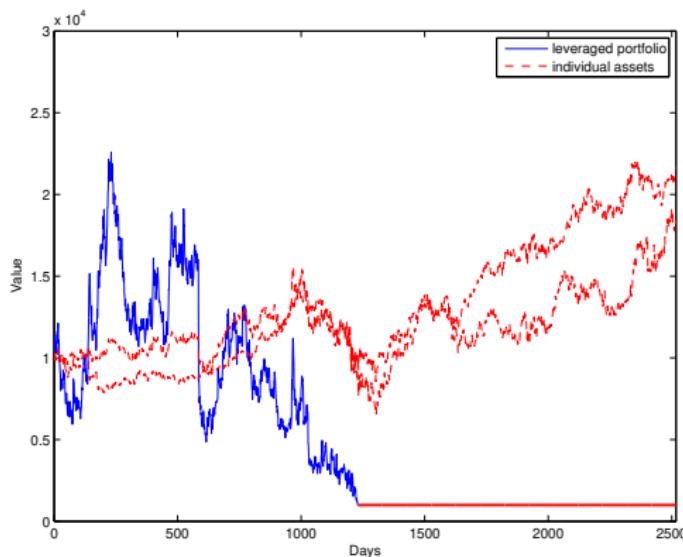
Cumulative value plot

- ▶ assets are Coca-Cola (KO) and Microsoft (MSFT)
- ▶ constant weight portfolio with $w = (0.5, 0.5)$
- ▶ $V_1 = \$10000$ (by tradition)



Cumulative value plot

- ▶ $w = (-3, 4)$
- ▶ portfolio **goes bust** (drops to 10% of starting value)



Outline

Return and risk

Portfolio investment

Portfolio optimization

Portfolio optimization

- ▶ how should we choose the portfolio weight vector w ?
- ▶ we want high (mean) portfolio return, low portfolio risk

- ▶ we know past **realized asset returns** but not future ones
- ▶ we will choose w that would have worked well on past returns
- ▶ ... and hope it will work well going forward (just like data fitting)

Portfolio optimization

$$\begin{aligned} & \text{minimize} && \text{std}(Rw)^2 = (1/T)\|Rw - \rho\mathbf{1}\|^2 \\ & \text{subject to} && \mathbf{1}^T w = 1, \quad \text{avg}(Rw) = \rho \end{aligned}$$

- ▶ w is the weight vector we seek
- ▶ R is the returns matrix for **past returns**
- ▶ Rw is the (past) portfolio return time series
- ▶ require mean (past) return ρ
- ▶ we minimize risk for specified value of return

- ▶ we are really asking what **would have been** the best constant allocation, had we known future returns

Portfolio optimization via least squares

$$\begin{aligned} & \text{minimize} && \|Rw - \rho\mathbf{1}\|^2 \\ & \text{subject to} && \begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix} \end{aligned}$$

- ▶ $\mu = R^T \mathbf{1}/T$ is n -vector of (past) asset returns
- ▶ ρ is required (past) portfolio return
- ▶ equality constrained least squares problem, with solution

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2\rho T \mu \\ 1 \\ \rho \end{bmatrix}$$

Examples

- ▶ optimal w for annual return 1% (last asset is risk-less with 1% return)

$$w = (0.0000, 0.0000, 0.0000, \dots, 0.0000, 0.0000, 1.0000)$$

- ▶ optimal w for annual return 13%

$$w = (0.0250, -0.0715, -0.0454, \dots, -0.0351, 0.0633, 0.5595)$$

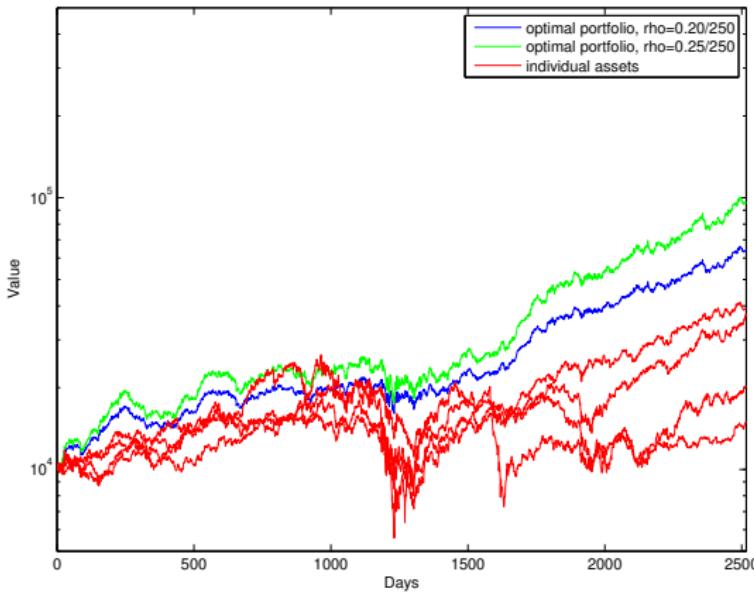
- ▶ optimal w for annual return 25%

$$w = (0.0500, -0.1430, -0.0907, \dots, -0.0703, 0.1265, 0.1191)$$

- ▶ asking for higher annual return yields
 - more invested in risky, but high return assets
 - larger short positions ('leveraging')

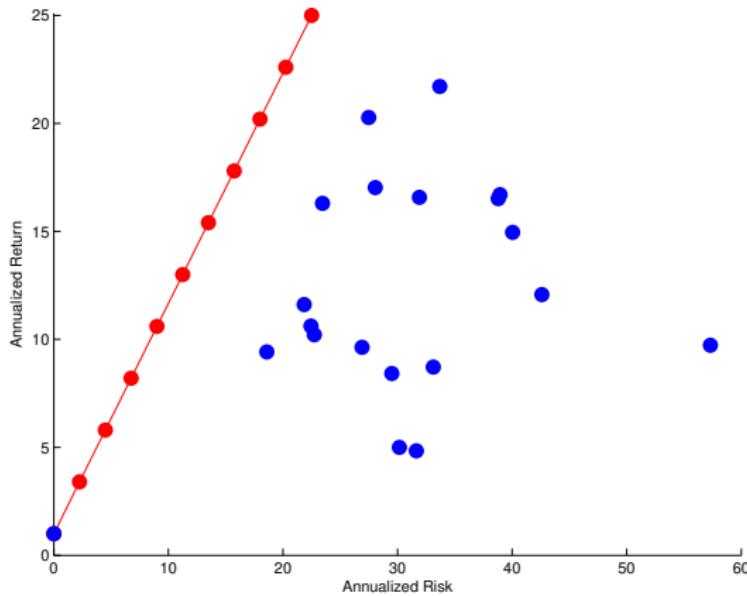
Cumulative value plots for optimal portfolios

cumulative value plot for optimal portfolios and some individual assets



Optimal risk-return curve

red curve obtained by solving problem for various values of ρ



Optimal portfolios

- ▶ perform significantly better than individual assets
- ▶ risk-return curve forms a straight line
 - one end of the line is the risk-free asset
- ▶ *two-fund theorem*: optimal portfolio w is an affine function in ρ

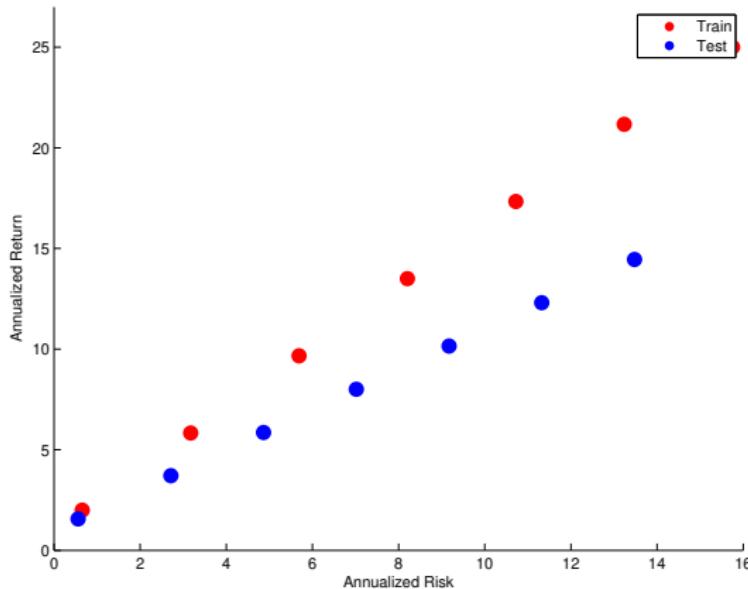
$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} R^T \mathbf{1} \\ 1 \\ \rho T \end{bmatrix}$$

The big assumption

- ▶ now we make the big assumption (BA):
future returns will look something like past ones
 - you are warned this is false, every time you invest
 - it is often reasonably true
 - in periods of 'market shift' it's much less true
- ▶ if BA holds (even approximately), then a good weight vector for past (realized) returns should be good for future (unknown) returns
- ▶ for example:
 - choose w based on last 2 years of returns
 - then use w for next 6 months

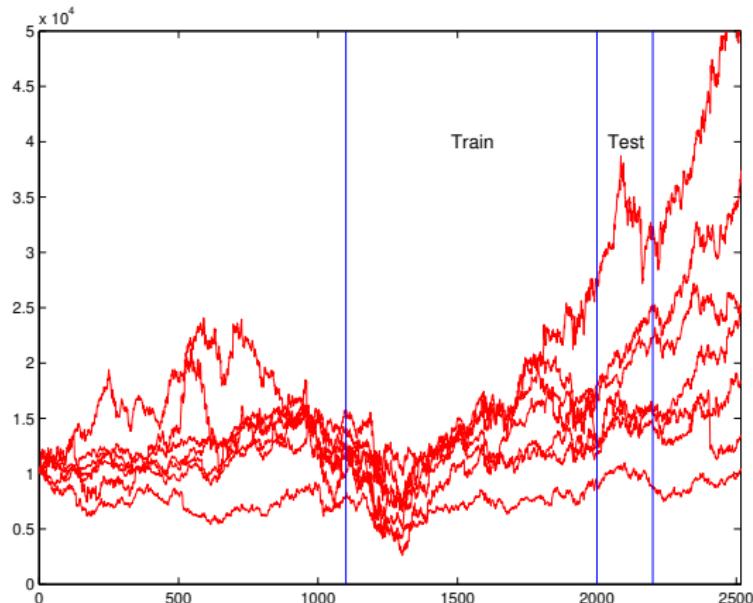
Optimal risk-return curve

- ▶ trained on 900 days (red), tested on the next 200 days (blue)
- ▶ here BA held reasonably well



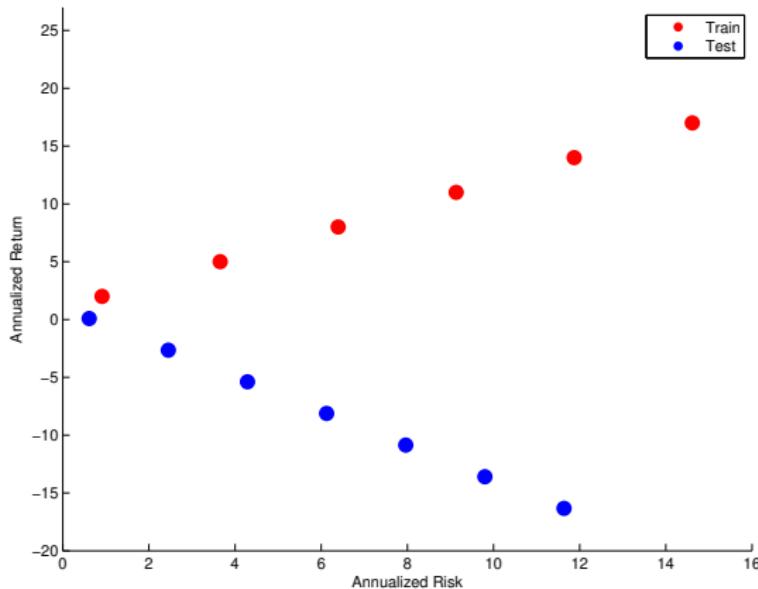
Optimal risk-return curve

- ▶ corresponding train and test periods



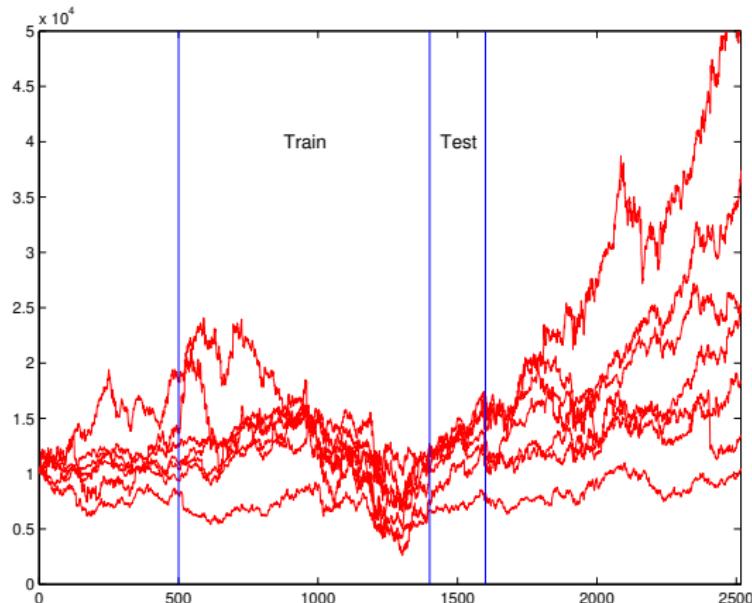
Optimal risk-return curve

- ▶ and here BA didn't hold so well
- ▶ (can you guess when this was?)



Optimal risk-return curve

- ▶ corresponding train and test periods



Rolling portfolio optimization

for each period t , find weight w_t using L past returns

$$r_{t-1}, \dots, r_{t-L}$$

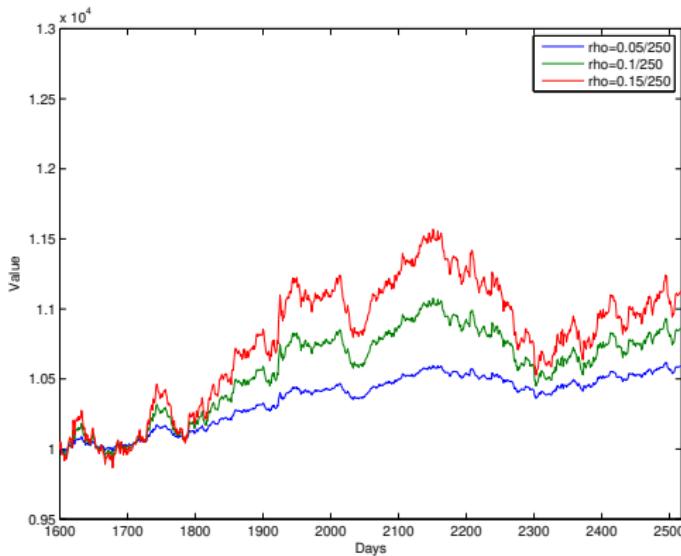
variations:

- ▶ update w every K periods (say, monthly or quarterly)
- ▶ add cost term $\kappa \|w_t - w_{t-1}\|^2$ to objective to discourage turnover, reduce transaction cost
- ▶ add logic to detect when the future is likely to not look like the past
- ▶ add ‘signals’ that predict future returns of assets

(... and pretty soon you have a quantitative hedge fund)

Rolling portfolio optimization example

- ▶ cumulative value plot for different target returns
- ▶ update w daily, using $L = 400$ past returns



Rolling portfolio optimization example

- ▶ same as previous example, but update w every quarter (60 periods)

