Introduction to Assistive Technology

- Definitions
- Broad overview
- What is a disability?
- Range of disabilities
- People involved - demographics and numbers
- Goal of rehabilitation
- Challenges of people with disabilities
- Perception of people with disabilities
- Examples of assistive technology products and devices
- Phraseology, semantics, and social correctness
- Last year’s student projects
- Last year’s class sessions
Definitions

- Disability
- Assistive Technology
- Rehabilitation
- Rehabilitation Engineering
Disability
Work-Based Definition

Persons with a disability are those who have a “health problem or condition which prevents them from working or which limits the kind or amount of work they can do”.

Current Population Survey
Cornell University Disability Statistics
Disability
Anatomically-Based Definition

The Department of Veterans Affairs uses a percent disabled definition partially based upon loss of use of limbs, etc that “interferes with normal life functions”.

Disability Activity-Based Definition

- Disability is defined in terms of limitations in a person's activities due to a health condition or impairment.

- Activities is a broad enough term to include working, doing housework, taking care of personal and household needs, and other age-appropriate activities.

- National Health Interview Survey
- UCSF Disability Statistics Center
WHO says

Disability is an umbrella term covering impairments, activity limitations, and participation restrictions.

- an **impairment** is a problem in body function or structure
- an **activity limitation** is a difficulty encountered by an individual in performing a task or action
- a **participation restriction** is a problem experienced by an individual in involvement in life situations.
WHO says

Disability is not just a health problem.

It is a complex phenomenon, reflecting the interaction between features of a person’s body and features of the society in which he or she lives.

Overcoming the difficulties faced by people with disabilities requires interventions to remove environmental and social barriers.
WHO says

People with disabilities have the same health needs as non-disabled people - for immunization, cancer screening, etc.

- They also may experience a narrower margin of health, both because of poverty and social exclusion, and also because they may be vulnerable to secondary health conditions, such as pressure sores or urinary tract infections.

- Evidence suggests that people with disabilities face barriers in accessing the specialized health and rehabilitation services they need in many settings.
Disability is defined as an individual’s physical or mental impairment that substantially limits one or more major life activities.
Disability
Opportunity-Based Definition

Disability is defined as any health condition or impairment that prevents an individual from taking full advantage of life’s opportunities such as education, vocation, recreation, and activities of daily living.
Disability
More Inclusive Definition

Disability is **any situation** that prevents an individual from taking full advantage of one’s **talents** and life’s **opportunities** including circumstances such as political system, socio-economic status, etc.
Lack of Opportunities

abused, butchered, chained, cremated, dehumanized, denied the right to vote, discriminated, disenfranchised, dragged, embittered life with hard labor, enslaved, evicted, falsely accused & convicted, forbidden to own land, forced to live in a ghetto, gassed, ignored, imprisoned, kidnapped, killed, lynched, murdered, overlooked, raped, repressed, restrained, segregated, shackled, shot, starved, sterilized, targeted, violated
Inclusive Definition of Disability

“Disability is a normal variation of the human condition.” - Gregor Wolbrinig
61 million adults in the United States live with a disability

26% of adults in the United States have some type of disability

(1 in 4)

The percentage of people living with disabilities is highest in the South
Percentage of adults with functional disability types

- **Mobility**: 13.7%
 - Serious difficulty walking or climbing stairs

- **Cognition**: 10.8%
 - Serious difficulty concentrating, remembering, or making decisions

- **Independent Living**: 6.8%
 - Difficulty doing errands alone

- **Hearing**: 5.9%
 - Deafness or serious difficulty hearing

- **Vision**: 4.6%
 - Blindness or serious difficulty seeing

- **Self-Care**: 3.7%
 - Difficulty dressing or bathing
Disability is especially common in these groups:

- **2 in 5** adults age 65 years and older have a disability
- **1 in 4** women have a disability
- **2 in 5** Non-Hispanic American Indians/Alaska Natives have a disability
Adults living with disabilities are more likely to:

<table>
<thead>
<tr>
<th>Condition</th>
<th>With Disabilities</th>
<th>Without Disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have Obesity</td>
<td>38.2%</td>
<td>26.2%</td>
</tr>
<tr>
<td>Smoke</td>
<td>28.2%</td>
<td>13.4%</td>
</tr>
<tr>
<td>Have Heart Disease</td>
<td>11.5%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Have Diabetes</td>
<td>16.3%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>
Disability in the US

- 71.4 million citizens have activity limitations ~ 23% of 308 million
 - Reports cite 32 to 78 million (over 1 billion globally - 15%)
- 24.1 million individuals have a severe disability
- 11 million children have a disability
- 25% of health care costs relate to disability
- Disability is the largest minority group
- > 22 million are 65 or older
- 10 million people with vision impairments
 - 1.3 million are legally blind (37 million blind globally)
- 24 million people with hearing impairments
 - 2 million are deaf
- > 1 million wheelchair users
- 6 million people have developmental disabilities
- Less than 5% are born with their disability
- > 12% of Stanford students are registered with OAE (2018)
Disability rates vary by age, gender, race, ethnicity, state of residence, and economic status.

Disabilities may result in a reduced chance for education and employment.

Disability is associated with differences in income - 27.8% working-age individuals with disability live in poverty.

As the nation ages, the number of people experiencing limitations will certainly increase.

Disability is a normal variation of the human condition.
Disability Types

- Congenital / acquired
- Physical
 - Sensory
 - Functional
- Psychological / neurological

Which disabilities are most obvious?
Age-related Disabilities

- Macular Degeneration
- Sarcopenia
- Cognitive Decline
- Commercial Pilot Restrictions
- Driving Restrictions
- Presidential Age
Desires of People with Disabilities

- Regain wellness & function
- Perform tasks independently
- Improve quality of life
- Take full advantage of all opportunities
 - Educational
 - Vocational
 - Recreational
 - Activities of daily living
- Pursue happiness
- Freedom to integrate into society (or be a part of their own group or be an individual)
Perceptions of Disabilities

- In the US:
 - A diminishing stigma
 - Mainstreaming
 - ADA

- In other countries:
 - Taken care of, but often hidden away
 - Pursuit of a technology solution is a priority
A Positive View

I'm looking for an employee who is creative.

That's me. I have ADHD and dyslexia. I'm also bipolar and schizophrenic.

Checking the internet...

Well... that's surprising.

Each of his conditions is highly correlated with creativity.

Are you a normal? I... think so.

Wow. I feel sorry for you. It must be hard going through life without any creativity.

What's happening here?

It might be some sort of creative thing.
Identify a large group of individuals who spend 12 to 25 years in institutions before they can contribute significantly to society.
Identify a large group of individuals who spend 12 to 25 years in institutions before they can contribute significantly to society.

Students!

Is this fair?
Downloadable Skills

Can you fly a B-212 Helicopter?

Matrix
Over the Hill at 24!

If you’re over 24 years of age you’ve already reached your peak in terms of your cognitive performance - and perhaps physical performance.

Simon Fraser University
Ability

Ability = Having the talents and opportunities to contribute to society
A Disability View of Life

Life events:
- Birth
- Walking
- Talking
- Bowel control
- Cursive writing
- Dressing
- Balancing
- Coordination
- Education
- Driving
- Financial
- Marriage
- Children
- Job
- Physical
- Benefit society
- Legacy
- Retirement
- Death
Social and Political Correctness

- Put the person rather than the condition first:
 - Individuals or people with a disability

- Focus on capabilities rather than disabilities:
 - Wheelchair user

- Refer to the person rather than the disability group - be inclusive:
 - NOT: The Blind (?), the Disabled, the Deaf
Exclusive

The People

The Disabled

UK - The People & The Royals
US - The People & The Celebrities (?)
Inclusive

People

People with disabilities

US Constitution
People-first language aims to avoid perceived and subconscious dehumanization when discussing people with disabilities, as such forming an aspect of disability etiquette.

The basic idea is to impose a sentence structure that names the person first and the condition second, i.e. "people with disabilities" rather than "disabled people", in order to emphasize that "they are people first". Because English syntax normally places adjectives before nouns, it becomes necessary to insert relative clauses, replacing, e.g., "asthmatic person" with "a person who has asthma".

The speaker is thus expected to internalize the idea of a disability as a secondary attribute, not a characteristic of a person's identity. Critics of this rationale point out that the unnatural sentence structure draws even more attention to the disability than using unmarked English syntax, producing an additional "focus on disability in an ungainly new way".
Social and Political Correctness

- **Shorthand terms:**
 - Para, Quad

- **Derogatory terms:**
 - Gimp, Crip, Spaz, Retard

- **Use of terms:**
 - “Patient”, “User”, “Subject”, “Consumer”
 - “Suffering from”, “Afflicted with”, “Confined to”, “Victim of”
 - “Diagnosed with”, “Living with”, “Survivor of”, “Recovering from”
 - “Inspiring” - lack of expectation
 - “Lost battle with … “
Medical & Common Use

- Crippled, Retarded, Deaf & Dumb, Lame
- Mute, Moron, Imbecile, Idiot, Spastic
- Persistent vegetative state
Portrayal of People with Disabilities

- Quasimodo
- Joseph Merrick
- Prof. Alastor "Mad-Eye" Moody
- Gary Busey
- Dr. Strangelove
Famous People with Disabilities
New Inductees - 2017

Brian Stowe Malala Richard III

Temple Grandin Tracy Morgan
Tiny Tim

A Few Recent Ones - 2018

Rogue One Warrior

Geordi La Forge & Data

Nimo

Dory

Male characters on Big Bang Theory
This Year - 2020

Bruce Springsteen

Linda Ronstadt
A Superhero with a Disability
Superheros with a Disability
Robert Van Etten

- Dwarf
- Midget
- Shorty
- Little person
- Munchkin
- Elf
- Height challenged
- Scooter-guy
- Something else?
Device Definition of Assistive Technology

The Technology Related Assistance Act of 1988 (P.L. 101-407) and the Assistive Technology Act of 1998 (P.L. 105-394) provide a standard definition of assistive technology as “any item, piece of equipment, or product, whether acquired commercially, modified, or customized, that is used to increase, maintain, or improve the functional capabilities of individuals with disabilities.”

South Carolina Assistive Technology Program - link
My Definition of Assistive Technology

- Assistive Technology (AT) is a generic term that includes:
 - **Devices, services, and policies** that benefit people with disabilities
 - **Institutions and facilities** where the work takes place
 - The **process** that makes them available to people with disabilities.

- An **AT device** is one that has a diagnostic, functional, adaptive, or rehabilitative benefit.

- An **AT service** provides various resources.

- **AT policies**, laws, and legislation mandate the provision of devices and services.

- Engineers employ an **AT process** to specify, design, develop, test, and bring to market new devices.
AT devices provide greater independence, increased opportunities for participation, and an improved quality of life for people with disabilities by enabling them to perform tasks that they were formerly unable to accomplish (or had great difficulty accomplishing or required assistance) through enhanced or alternate methods of interacting with the world around them.
Assistive Technology

Devices provide greater independence, increased opportunities for participation, and an improved quality of life for everyone by enabling us to perform tasks that we were formerly unable to accomplish (or had great difficulty accomplishing or required assistance) through enhanced or alternate methods of interacting with the world around us.
New AT devices incorporating novel designs and emerging technologies have the potential to further improve the lives of people with disabilities.

- Computers, IoT
- Robotics & Mechatronics
- Nanotechnology
- Medical technologies
- Wearable devices
New devices incorporating novel designs and emerging technologies have the potential to further improve the lives of everyone.

- Computers, IoT
- Robotics & Mechatronics
- Nanotechnology
- Medical technologies
- Wearable devices

This leads me to conclude that:
The universe seems neither benign nor hostile, merely indifferent to the concerns of such puny creatures as we are.

Carl Sagan
Health care professionals (not just engineers) are involved in evaluating the need for AT devices; working on research, design, and development teams; prescribing, fitting, and supplying them; and assessing their benefit.

- Physicians
- Clinicians
- Therapists
- Suppliers
- Policy makers
- Educators
- Caregivers
Rehabilitation

- **Medical model**: Restoration of function caused by disability - through surgery, medication, therapy, and/or retraining

- **More inclusive model**: Includes Assistive Technology
Goals

- **Goal of Rehabilitation**
 - Restore function and wellness

- **Goals of Assistive Technology**
 - Increase independence
 - Improve quality of life
Scientific Definition of Rehabilitation Engineering

Rehabilitation Engineering may be defined as a total approach to rehabilitation that combines medicine, engineering, and related sciences to improve the quality of life of persons with disabilities.

How and when did the rehabilitation engineering center program come into being? - James R. Reswick, ScD, DE - NIDRR - link
Rehabilitation Engineering

Rehab Engineers assist people who have a functional impairment by engaging in one or more of these activities:

- Device Design
- Research & Development
- Technology Transfer
- Marketing
- Provision
- Education & Training
Facets of Rehabilitation Engineering

- Personal Transportation (vehicles and assistive driving)
- Augmentative & Alternative Communication
- Dysphagia: Eating, Swallowing, Saliva Control
- Quantitative Assessment
- Technology Transfer
- Sensory Loss & Technology
- Wheeled Mobility & Seating
- Electrical Stimulation
- Computer Applications
- Rural Rehabilitation
- Assistive Robotics & Mechatronics
- Job Accommodation
- Gerontology - Technology for Successful Aging
- International Appropriate Technology
- Universal Access
The term rehabilitation technology refers to the systematic application of technologies, engineering methodologies, or scientific principles to meet the needs of and address the barriers confronted by individuals with disabilities in areas which include education, rehabilitation, employment, transportation, independent living, and recreation. The term includes rehabilitation engineering, assistive technology devices, and assistive technology services.
Many people with a disability - in US and world-wide (over 1 billion)

Largest non-homogeneous group in the US is wheelchair users (several million)

Every consumer has a unique personality, challenges, circumstances, goals, and aesthetic preferences

The lack of a well-defined mass market means that companies serving individuals with disabilities and older adults are small and their products are expensive
Universal Design

Universal design (often called **inclusive design**) refers to a design strategy meant to produce buildings, products, and environments (shared resources) that are inherently accessible to the greatest number of individuals including older adults, people without disabilities, and people with disabilities.

The term "universal design" was coined by the architect Ronald L. Mace to describe the concept of designing all products and the built environment to be aesthetic and usable to the **greatest extent possible** by everyone, regardless of their age, ability, or status in life.
Universal Design Examples

The Problems with Ramps
Blended into Stairs

Ed Roberts Campus
Example Assistive Technology Devices

- Projects I worked on at the VA RR&D Center
- Commercial devices and research projects
- Technologies that have made an impact
Head Control Interface

• Features
 – 2 degrees of freedom
 – real-time operation
 – non-contact interface
 – front or rear sensing
 – mouse or joystick substitute

• Applications
 – control of mobility (electric wheelchair) contrast with voice control alternative
 – control of cursor position with hands on keyboard
 – demonstrated robot control
Head Control Interface Video

[YouTube link]
Ralph Fingerspelling Hand

- Ralph offers individuals who are deaf-blind improved access to computers and communication devices in addition to person-to-person conversations.

- Enhancements of this design include better intelligibility, smaller size, and the ability to optimize hand positions.
Ralph Video

YouTube link
The goal of this project was to evaluate the potential of a high-quality computer-based driving simulator to accurately assess and improve the driving ability of veterans with Stroke and Traumatic Brain Injury (TBI).

- Create realistic driving scenarios to address specific cognitive, visual, and motor deficits in a safe setting
- Compare driving performance with traditional “behind-the-wheel” assessment and training

DriveSafety Model 550C 3-Channel Simulator with Saturn car cab.
Example Assistive Technology Devices

<table>
<thead>
<tr>
<th>Bionic Hand</th>
<th>Bionics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luke Arm</td>
<td>Terminator Arm Fingers</td>
</tr>
<tr>
<td>Prosthetic Arm Design</td>
<td>Cochlear Implants</td>
</tr>
<tr>
<td>Bionic Eye</td>
<td>Advanced Prosthetics</td>
</tr>
<tr>
<td>Joint Implants</td>
<td>Exoskeleton</td>
</tr>
<tr>
<td>Personal Robot</td>
<td>Mind-controlled Limbs</td>
</tr>
<tr>
<td>Brain Computer Interface</td>
<td>Project Daniel</td>
</tr>
<tr>
<td>3-D Printing</td>
<td>Robot Bed / Wheelchair</td>
</tr>
<tr>
<td>Cyborg Beast</td>
<td>Designs for People with Dementia</td>
</tr>
<tr>
<td>Google Glass</td>
<td>Steampunk Wheelchair</td>
</tr>
<tr>
<td>Bionic Pets</td>
<td>Head Control Wheelchair</td>
</tr>
<tr>
<td>Essential Tremor</td>
<td>Whill Wheelchair</td>
</tr>
<tr>
<td>Ralph Fingerspelling Hand</td>
<td></td>
</tr>
</tbody>
</table>
Brain Computer Interface

- Noninvasive - picks up surface EEGs
- Determines 6 mental states - concentration / meditation
- Detects blinks
- Controls computer games
- Open API for other applications

NeuroSky’s MindSet
$200
Mind-controlled Limbs

Humans can now move robotic limbs using only their thoughts and, in some cases, even get sensory feedback from their robotic hands. 60 Minutes
“Officially launched in January 2012, Robohand creates affordable mechanical prosthetics through the use of 3D printers. Not only that, but it has made its designs open source, so that anyone with access to such printers can print out fingers, hands, and now arms as well.”
A company called Not Impossible Labs has come up with one of the best uses for 3D printer technology we’ve ever heard of: printing low-cost prosthetic arms for people, mainly children, who have lost limbs in the war-torn country of Sudan.
“Jeremy Simon from 3D Universe was able to create a 3D-printed hand that he calls the Cyborg Beast. It's a completely mechanical device made from ABS plastic with a series of flexible cords that allow it to act like a real hand. It turned out so well that the patient says he prefers it for day-to-day use.”
Robot Bed / Wheelchair

“A bed that transforms directly into a wheelchair. The mattress is split in half, with one side remaining firmly in place when the other half is separated to form the body of the chair. A patient simply needs to move over a few inches to one side, and with a few adjustments they’ll be sitting upright in a powered wheelchair. A single caregiver assists during the transformation process, significantly reducing the burden on staff.”

Panasonic
Google Glass

Tammie Lou Van Sant of Santa Cruz is a quadriplegic. She has wanted to take pictures for years and now is able to do it independently using Google Glass - with a nod, swipe, or verbal command.

“I am a New Yorker, a law student, a quadriplegic. With Google Glass I could finally capture my life on my own. I would show the world how to thrive with physical limitations in the most interesting city on the planet. With Glass, paralysis doesn’t have to be paralyzing.” Alex Blaszczuk
“A re-thinking of a table setting specifically tailored to help those with cognitive impairment eat without assistance.” Sha Yao

Designs for People with Dementia
Winner of Stanford Center on Longevity First Design Challenge
“Sometimes individual animals need our help. Left disabled without fins, flippers, beaks, or tails because of disease, accidents, or even human cruelty, these unfortunate creatures need what amounts to a miracle if they are to survive. Luckily for them, sometimes miracles do happen. Amazing prosthetics made possible by the latest engineering and technology are able to provide just what they need, and scientists are finding that innovations created in the process are benefiting both animals and humans.”
“Help us construct a retro-futuristic Steampunk Wheelchair for a 14 year-old boy with Muscular Dystrophy. We want to modify a wheelchair to take it from ‘functional’ to ‘awesome’ to will help him gain confidence in his interactions by changing the focus of the conversation and expressing his uniqueness and individuality through his mobility device.”
Essential Tremor

“A motion sensor and a tiny computer in Liftware’s rechargeable base work together to analyze movement frequencies and distinguish unintentional tremor from intentional movements like bringing the spoon to your mouth. Based on that feedback, the utensil attachment compensates for the involuntary motion; if the tremor sends the base stabilizer to the left, the spoon head will adjust to the right.”
iBot Wheelchair

- **The Balance Function** elevates the user to move around at eye level and to reach high places independently. In this function, the front wheels rotate up and over the back wheels, while the user remains seated at an elevated position.

- **The Stair Function** enables the user to safely climb up and down stairs, with or without assistance, giving them access to previously inaccessible places.

- **The 4-Wheel Function** enables the user to climb curbs as high as five inches and to travel over a variety of uneven terrain, such as sand, gravel, grass, thick carpet and other surfaces.

- Johnson & Johnson Independence Technology
- Toyota Research Institute
- Mobius Mobility
Whill Wheelchair

I AM NOT DISABLED. I just really like wheelchairs!

Alexis Wheelchair
Student Projects from 2020
Explore designs for an improved device for transporting camping items on a scooter.
Explore solutions that would enable Paul, a tetraplegic, to enjoy photography.
Explore design solutions that would make it easier for Danny to buckle himself into his wheelchair independently.
Uno, Dos, Trays
Laptray for Ben

Explore designs for a custom laptray for Ben.
Explore designs for a wheelchair accessory that will aid Abby in performing common tasks including a drawing / writing / work surface, a support for a laptop, and a platform for eating.
Explore ways to enhance the nighttime visibility of Abby's wheelchair.
Stuffed Animals
Arm Rest Project with Nick

Explore Arm Rest designs that address problems with the stock Dual Post Height Adjustable "Removable" Arm Rests on Nick’s Quickie Model GP wheelchair.
Team Harmony
Project with Magical Bridge Playground

Explore designs to improve access to and navigation around the playground, as well as to create new play and educational experiences incorporating multiple senses, actions, and outcomes for all playground users and visitors, especially those with visual impairments and diminished fine motor skills.
One and Two Credit Unit Projects (Last Year)

• Teams of one or two students
• Ten-week course (classes shut down after Week 9)
• Projects may not reflect challenges experienced by people with disabilities and older adults in the local community and may not require the fabrication of a prototype
• Presentation, report, and project demonstration
Knee Scooter

Design a knee scooter that can be collapsed for portability.
Laptray Project in Peru

Design a low cost laptray for a wheelchair user in Peru.
Quick Switch

Explore designs for a device to make a toggle light switch easier to operate.
Gripping Opener

Explore designs for a device to it easier for people with limited hand strength to open pop top cans.
Candidate Student Projects

- Solicited from community
- Suggested by Dave
- Student-defined projects
Project Offerings

This year’s candidate projects:

- Projects with Abby, Olenka, Austin, Danny & Stanford, CNH
- Report on an advance in assistive technology
- Report on a disability-related topic
- Report on a local disability or aging organization
- Pursue a paper or CAD design
- Pursue an “appearance model”
- Create a work of art
- Engage in an aftermarket aesthetic design
- Engage in an aftermarket functionality / usability design
- Student-defined projects
- Other projects
Project Pitches & Team Formation

Dave’s suggested projects:

- Creative Expression
- Designing Your Afterlife
- COVID-related Projects
- Tactile Art
Student Project Resource People

- Debbie Kenney - Occupational Therapist
- Doug Schwandt - Mechanical Engineer Consultant
- Gary M. Berke - Director of Prosthetics
- Jules Sherman - Designer & Entrepreneur
- Matteo Zallio - Fulbright Scholar
Other Involved People

- Project suggestors
- Individuals with disabilities
- Community members attending lectures
Flexible course focusing on building confidence and enhancing professional skills

- Lectures, projects, virtual field trips, virtual assistive technology faire, mid-term & final presentations and reports, project demonstration
- Opportunities for in-class participation and reflection
- Lots of assistive technology products, research, student projects, and remaining challenges
- Assistive technology benefits everyone
- Everything is assistive technology!
Contact Information

- Websites:
 - http://engr110.stanford.edu

- Email address:
 - Dave Jaffe - 650/892-4464
 - davejaffe@stanford.edu
Questions?
Fill out anonymous online Evaluation Form
Adjourn

class dismissed