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THE NATURE OF ENGINEERING

Accuracy, Precision, Errors, and Significant Figures

Errors like straws upon the surface flow;
He who would search for pearls must dive below.

Dryden

Errors

Measurements are always characterized by uncertainty.  Whether because of the
possibility of instrument drift, the need to interpolate visually an instrument scale, or
the difficulty of defining exactly what we wish to measure, we are never certain that the
value of what we have measured is the "true" value of what we intended to measure.
Thus, we assume that all measurements include the possibility of "errors", and a
measurement is not completely described without some indication of the nature of
these errors (the uncertainty in the measurement).  Measurement errors are
unavoidable, so "error" in this context does not mean "mistake."  We may have
measured the true value, but we are never certain that we have done so.

Quite a bit of jargon has been developed to describe measurement errors.  In previous
classes you may have discussed the different meanings of the words “precision” and
“accuracy.”  “Precision” refers to the uncertainty in a measurement reading or
observation.  It is closely linked with the term “reproducibility.”  A precise
measurement is one which is characterized by high reproducibility.  Repeated
observation leads to nearly identical reported values.  “Accuracy” is used to describe
the closeness of an observation to the true value of the parameter being measured.  It is
independent of precision.  Note that precision necessarily refers to the characteristics of
a set of repeated observations, while accuracy can refer to a set of observations or to an
individual observation.  In other words, an observation from an imprecise instrument
could very well be highly accurate, but a second observation has a high probability of
being inaccurate since the instrument is imprecise.  Whether from imprecision or
inaccuracy, measurements are always characterized by errors, and the term “errors” is
commonly used to describe both imprecision and inaccuracy collectively.
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It is useful to think of measurement errors in two categories:  systematic errors and
random errors.

Systematic errors

Systematic errors are those differences between an observation and the true value that
are consistent from one observation to the next.  For example, suppose the scale plate
on a thermometer were shifted up or down.  Then all of our observed temperatures
would be off by the amount of the shift.  Such calibration errors are the most common
type of systematic error.  Note that systematic errors, since they are consistent from
one measurement to another, are most closely associated with inaccuracy.  Also note
that systematic errors are relatively easily managed, once they are detected.  Detection,
however, is nontrivial.

Random errors

Random errors are more difficult to characterize and are usually more difficult to
manage.  By definition, they are unpredictable and change from one observation to
another.  Common sources of random errors include:

• different applications of the instrument and technique, for example, by different
people during visual interpolation of instrument scales;

• inherent randomness in the instrumentation (usually electronic components);
• uncontrolled and unobserved external influences on the measurement.  As an

example of the latter, consider the effect of wind on a rain gage measurement.
While wind essentially always reduces the measured amount of rain, the
magnitude of that reduction depends on wind speed, direction, etc.  These factors
vary from event to event, day to day, leading to an unpredictable and varying
error in the measurement.

• random differences in the quantity being measured, such as the differences
between individual paper clips when measuring the number of bends required
to break a paper clip.

Random errors manifest themselves as an error distribution, which is often represented
graphically.  Here is one example:
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While such a distribution completely describes the nature of the errors, it is awkward to
use and manipulate.  Therefore, it is quite common to forego the complete information
provided by the error distribution and instead to describe the errors by an error or
precision index.  We typically write:

xexact = xobserved ±∆x

where ∆x  is the precision index or error .  Note that the definition of ∆x  can be
ambiguous.  It is a single number used to characterize the actual distribution of errors.
Some choose to define ∆x  in terms of the standard deviation of the distribution, s :
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As an example, the magnitudes of x  and s  are indicated on the histogram shown
above .  The magnitude of ∆x  can then be defined as some multiple of s .  So a
measurement might be reported as:

x ± 2s

The more conservative the observer, the greater the multiplier in front of s .

Others choose to define ∆x  in terms of the maximum imaginable error.  This is often
the case when reading scales with tick marks, e.g., you are certain the observation is
between one pair of tick marks and not another.
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Significant digits or figures

In many cases engineers and scientists choose not to identify a precision index explicitly,
but rather to use an implied precision via significant digits.  For example, all of the
following numbers have 3 significant digits:

3820
220.

6.47
0.190
0.00518

Significant digits carry with them an implied precision of ±1/2 unit in the rightmost
significant digit, i.e.,

3280 ± 5
220. ± 0.5

6.47 ± 0.005
0.190 ± 0.0005
0.00518 ± 0.000005

This implied precision derives from the notion of the uncertainty in reading an
instrument scale with tick marks corresponding to the rightmost significant digit.  The
implied precision then represents the half-way point between successive tick marks.

Error Propagation

Our first problem was to define the errors associated with a measurement.  Our next
problem is to assess the impacts of these errors on derived variables.  In other words, if
we use a measurement to calculate some other variable, how does the error in the
measurement propagate through the calculation?  How big is the error in the derived
variable?  For example, suppose we measure the length and width of a rectangle.  What
will the error (uncertainty) be in the calculated area of the rectangle?

Suppose we have some derived variable f which is a function of n different
measurements, x1, x2, x3,…, xn.  So we can write:

  f = f (x1,x2, x3,L , xn )
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The error in f , ∆f , is bounded by (is no bigger than):

  
∆f ≤

∂f

∂x1

∆x1 +
∂f

∂x2

∆x2 +
∂f

∂x3

∆x3 +L +
∂ f

∂xn

∆xn

The partial derivative of f with respect to x1

∂ f

∂x1

is the rate of change in the value of f with respect to a change in x1, with all other xi held
fixed.  It is found by taking the ordinary derivative of f  assuming that all xi  other than
x1 are constants.

The bound given above is often quite large.  If we wish a tighter error estimate, we
need to be able to make an assumption.  Let’s assume that the errors in the
measurements, ∆x1, ∆x2, ∆x3,…, ∆xn, are independent..  In other words, our uncertainty
about x1 isn’t related to or influenced by our uncertainty about x2, or any of the other
measurements.  This is not an outrageous assumption in many cases.  For example,
suppose you are going to estimate a velocity, V, by timing how long it takes, t, to move
a given distance, x.  The uncertainty, or imprecision, in your measurements of time and
distance will be independent—you are using different measurement instruments.

If the errors are independent and random and are defined consistently as the same
multiple of si, then:
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Using the velocity example and introducing numerical values:

f = V =
x

t

with measured values: x = 5.1± 0.05 t = 2.3 ± 0.08

Finding the derivatives we need:

∂ f

∂x
=

1

t

∂ f

∂ t
= −

x

t2

So, in general

∆f ≤
∆x

t
+ −

x∆t

t2

and, if the errors are random and independent:
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∆f =
∆x2

t2 +
x2∆t2

t 4 =
x

t

∆x2

x2 +
∆t2

t2

After substituting numerical values, we find:

f =
x

t
= 2.217 ∆f = 0.080 ≤ 0.099

Many people would choose to write the final result as:

f = 2.22 ± 0.08

It is worth noting that if

∆t = 0.05

then

∆f = 0.053 .

The error in the calculated velocity is clearly dominated by the error in measuring t.

Error propagation for simple operations

The general formulas given above for the upper bound on ∆f  and for the case of
independent errors reduce to very simple results in the case of the four basic arithmetic
operations of addition, subtraction, multiplication, and division.

If f = x1 ± x2

then ∆f ≤ ∆x1 +∆x2

and for independent, random errors

∆f = ∆x1
2 +∆ x2

2 .

If f = x1 * x2 or x1 / x2

then
∆f

f
≤

∆x1

x1

+
∆x2

x2
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and for independent, random errors
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Error propagation for significant figures

When an error index is not explicitly provided and precision is therefore implied by
significant digits, there are some useful rules of thumb that approximate the results of
the strict application of error propagation theory.  These rules of thumb are almost
always adequate.

1) When adding or subtracting, the sum or difference is rounded to the last decimal
place in the least precise number.

Example:

1.004
4.2
0.144
5.348 ⇒ 5.3

2) When multiplying or dividing, the product or quotient is rounded to the number of
significant digits in the number with the least number of significant figures.

Examples:

4.9178 * 2.03 = 9.98313 ⇒ 9.98

456.212/2.17 = 210.2359 ⇒ 210.

Implied precision vs. explicit error propagation

The use of implied precision to represent the effects of uncertainty is an alternative to
using formal error propagation.  In other words, the rules of error propagation
(usually) lead to a statistically justified estimate of the uncertainty (precision) in a
calculated variable that is a function of one or more other uncertain variables.  The rules
of thumb of implied precision (significant figures) are an approximation to the rules of
error propagation.  Let's consider an example.

V =
4Q

πD2

V happens to be the velocity of water flowing in a pipe of diameter D when the volume
of water per unit time flowing through the pipe is Q.  V can be measured in ft/sec, D in
feet, and Q in ft3/sec (cfs).
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Suppose that:
Q = 0.22 cfs,  ∆Q = 0.005 cfs

D = 0.667 ft,  ∆D = 0.0005 ft

In other words, let's begin by assuming the specified precision index is consistent with
the implied precision in the data as given.  Since for an arbitrary function,

  f = f (x1,x2, x3,L , xn ) , with independent errors:
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then in this particular case:

V = 0.630 ft / sec

∆V =
4

πD2
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∆D2 = 0.014 ft / sec

The significant figures rule of thumb for this same calculation yields a two-significant-
digit result, i.e., V = 0.63 ft/sec, with an implied precision of ∆V = 0.005 ft/sec.

So, in this case, the rule of thumb yields an implied precision in the calculated velocity
that is somewhat smaller than the correctly propagated error.  The difference is small
enough (a factor of 2) that we can judge the rule of thumb as adequate in this case.
Another way of saying this is that the correctly propagated error results in more than 1,
but less than 2 significant digits, while the rule of thumb yields 2 significant digits.

You might find it interesting to verify that the propagated error will be 0.005 ft/sec if
∆Q were 0.0017 cfs (∆D as given above).

Averaging

One of the reasons that we average replicate measurements is to increase precision.
That is, averaging is one way to increase the number of significant digits.  Let's see how
this works.

Using our functional notation, we can write out the definition of the average:

  
f (x1,x2,K , xn ) = x =

1

n
xi

i =1

n

∑

so

∂f

∂xi

=
1

n

Assuming that the precision index for all xi is the same, e.g., ∆x, then substitution into
Equation (1) above gives
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∆f = ∆x =
∆x

n
.

This means that 100 replicates gets us 1 additional significant digit and 10,000 replicates
get us 2 additional significant digits.

Here is a numerical example.  Suppose we take 4 replicate measurements and obtain
values of

104, 106, 106, 105

The average is 105.25 (exactly).  Using the implied precision for each of the
measurements, 0.5, we find that the precision of the average is 0.5/2 = 0.25.  We could
either report that value as a precision index, i.e., 105.25 ± 0.25, or, if we choose to use
implied precision and not show a precision index, then we are left with 105 as the most
appropriate reported value.  This is equivalent to what the rules of thumb for significant
figures would yield.

Units conversions

Units conversions require some special care when considering error propagation or
significant figures.  In general, units conversions involve multiplication (or division) by
a constant.  In other words, they are a simple linear scaling.  In many cases the scaling
constant is not uncertain or is known to a large number of digits.  Therefore, a units
conversion is not the same as the multiplication of two uncertain numbers, and the
rules of thumb of significant figures do not apply.

Note first that a simple scaling propagates through an error analysis as a simple scaling
of the precision index:

f (x) = cx

∆f = c2∆x 2 = c∆x

Now, consider this example:  we are provided with a measured length of 1.5 ft and we
wish to convert to units of inches.  The multiplicative conversion factor is 12 in/ft.  So,

1.5 ± 0.05 ft = 12*1.5 ± 12*0.05 in = 18.0 ± 0.6 in

The converted length could be reported this way, or you would be justified in using
implied precision and just giving the length as 18 inches (0.6 is pretty close to 0.5).

Let’s compare this with the multiplication of two uncertain numbers:

1.5 ± 0.05 * 12 ± 0.5 = 18.0 ± 0.96

The precision index of the product was calculated using the error propagation equation,
(1).  So the rules of thumb do all right here.  They indicate that the product could be
given to 2 significant figures with an implied precision of 0.5.  Although smaller than the
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more appropriate value of 0.96, 0.5 is the closest of the possible implied precisions (5,
0.5, 0.05), so giving the product as 18 would be satisfactory.

Now, let’s return to a units conversion.  This time consider a measured length of 9.5 ft
converted to inches.

9.5 ± 0.05 ft = 12*9.5 ± 12*0.05 in = 114.0 ± 0.6 in

So the converted length should be reported as 114 if using implied precision.  Therefore,
we have added a significant figure, and the rules of thumb do not work here, since they
would specify two significant figures.

It is worth noting that the rules of thumb must be applied equally carefully when
dealing with other functions in addition to units conversions.  For example, consider the
sine function.

f (x) = sin(x)

∆f = cos(x)∆x

Take a look at the following table.

x sin(x) cos(x) ∆sin(x)
(radians)

0.000  0.0000  1.0000 0.00050
0.785  0.7068  0.7074 0.00035
1.571  1.0000 -0.0002 0.0000001
2.356  0.7072 -0.7070 0.00035
3.142 -0.0004 -1.0000 0.00050

With x specified in radians to ±0.0005, we find that the maximum (worst) precision
index for sin(x) is 0.0005.  This means that 4 digits in x yield 3 digits in sin(x) for some
values of x.  It is important to note that in this case the precision index of sin(x) is a
function of x.  For some other values of x (1.571) the precision index is very small so
that sin(x) has many more than 7 significant digits!

Interpreting reported data

In a perfect world, all data would be specified with their precision indices.  In a
somewhat less perfect world, all data would be specified to their appropriate significant
figures.  Unfortunately, in our world, we often rely on context and assumed knowledge
of the data user to streamline the presentation of data.  As a result, we often must make
informed assumptions about the precision with which particular data are specified.  Let
me illustrate with a few examples.

Suppose you are provided with a set of measurements as follows:  15, 37, 91, 80, 56, ….
It would be appropriate to assume that each of these numbers is specified to two
significant digits, including the ‘80’, in spite of the fact that there is no decimal point
shown after the ‘0’ in 80.  While the decimal point would be formally required, the
context indicates that the ‘0’ is significant.  A similar example would be reporting the
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dimensions of a rectangular area as 235’ x 100’.  The context indicates that both of the 0’s
in ‘100’ are significant.

Another common situation is illustrated by the specification of pipe sizes, e.g., a “6-inch
pipe.”  Taken literally, this specification indicates an uncertainty of ±0.5 in. for the pipe
diameter.  However, considering that pipe is machine-manufactured, it seems unlikely
that the uncertainty would be this large.  In fact, for standard steel screw pipe the
internal diameter of 6-in pipe is specified as 6.065 in.  So in reality, a reasonable precision
to be applied to “6-in pipe” might be ± 0.05 or even ± 0.005 in.  Of course, if we knew
from the context that we were talking about standard steel screw pipe, then we would
use the value 6.065 in. with its implied precision of 0.0005 in.

Further Reading

Taylor, John R., An Introduction to Error Analysis, University Science Books, Sausalito,
CA, 1982.


