E209A LECTURE 11

GOALS OF THIS LECTURE:

- Lyapunov theory for asymptotic and exponential stability.
- Examples of Lyapunov.
- LaSalle's Theorem.
- Examples of LaSalle.

REFS:
SASTRY § 5.3, 5.4, 5.5
KHALIL § 4.1, 4.2, 4.4, 4.5
LaSalle
DEFN \(x_e = 0 \) is said to be an **ASYMPTOTICALLY STABLE** equilibrium point of (NL) \(\dot{x} = f(x(t), t) \) if:

1. \(x_e = 0 \) is **STABLE** (equilibrium point)
2. There exists a \(S > 0 \) such that
 \[
 \| x_0 \| < S \Rightarrow \lim_{t \to \infty} \| x(t) \| = 0
 \]

Remark: need both (1) and (2)

(2) **does not** imply (1).

Example:
\[
\begin{align*}
\dot{x}_1 &= x_1^2 - x_2^2 \\
\dot{x}_2 &= 2x_1x_2
\end{align*}
\]

Identify \(x_1 = \infty \)
with \(x_1 = -\infty \).

This system is **not asymptotically stable** because it is not even stable. Given \(\epsilon > 0 \), there are always initial conditions close to \(x_2 = 0 \) which will exit the \(\epsilon \)-ball before converging to 0.
\text{Def} \ x_e = 0 \text{ is a } \underline{\text{Globally Asymptotically Stable}} \text{ equilibrium point of } (\text{NL}) \text{ if}

1. \ x_e = 0 \text{ is an asymptotically stable eq.}
2. \ \lim_{t \to \infty} x(t) = 0 \text{ for all } x_0 \in \mathbb{R}^n.

\text{(Note: Global Stability is defined in the obvious way.)}

\text{Def} \ x_e = 0 \text{ is an } \underline{\text{Exponentially Stable}} \text{ equilibrium point of } (\text{NL}) \text{ if there exists } m, \alpha > 0 \text{ such that}

\|x(t)\| \leq me^{-\alpha t} \|x_0\|

for all \ x_0 \in B_r, t > 0. \text{ The constant } \alpha \text{ is an estimate of (and is called) the rate of convergence.}

\text{(Note: Global Exponential Stability requires } x_0 \in \mathbb{R}^n).}

\text{Exponential Stability } \subset \text{ Asymptotic Stability } \subset \text{ Stability}
NOTE 1: The type of stability we are interested in depends on the engineering system at hand. For example, for a thermostat in a room we are usually satisfied with mere stability, whereas for a car's cruise control system, or an aircraft's autopilot system, we require exponential stability.

NOTE 2: Even if the system (NL) is stable (asymptotic, exponential...) the solution $x(t)$ need not be continuous anywhere except at $\tau_e = 0$.
LYAPUNOV ASYMPTOTIC STABILITY THEOREM.

Consider \(\dot{x}(t) = f(x(t), t) ; x(t_0) = x_0 \) with equilibrium state \(x_e = 0 \).

If \(\exists r > 0 \) such that

1. \(V(x, t) = \text{p.d., decreasing, } L\text{-fn on } G_r \)
2. \(-\dot{V}(x, t) = \text{pd on } G_r \) [new condition]

Then \(x_e = \text{asymptotically stable} \).

Intuition [not a formal proof].

1. \(\Rightarrow x_e \text{ is stable (1st) by Lyapunov Stability Theorem.} \)

2. \(\Rightarrow \left[\frac{dV}{dt}(x(t), t) = \dot{V} < 0 \text{ whenever } x(t) \neq 0 \forall t \geq t_0 \right] \)

\(\Rightarrow \left[V(x(t), t) \rightarrow 0 \right] \Rightarrow \left[x(t) \rightarrow 0 \right] \)

\(\uparrow V = \text{pd, decr.} \)

\(\Rightarrow x_e = \text{asymptotically stable (a.s)} \)

Note: Global theorems result from replacing \(G_r \) with \(\mathbb{R}^n \).
Summary (Basic Lyapunov Theorems)

<table>
<thead>
<tr>
<th>Condition on $V(x,t)$</th>
<th>Condition on $-\dot{V}(x,t)$</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_d, decr. on Gr</td>
<td>≥ 0 on Gr</td>
<td>Stable on Gr ("locally")</td>
</tr>
<tr>
<td>p_d, decr on \mathbb{R}^n</td>
<td>≥ 0 on \mathbb{R}^n</td>
<td>Stable on \mathbb{R}^n ("globally")</td>
</tr>
<tr>
<td>p_d, decr on Gr</td>
<td>pd on Gr</td>
<td>asympt. stable on Gr</td>
</tr>
<tr>
<td>p_d, decr. on \mathbb{R}^n</td>
<td>pd on \mathbb{R}^n</td>
<td>asympt. stable on \mathbb{R}^n</td>
</tr>
</tbody>
</table>

Sometimes use the following notation:

- LPDF "locally PD function"
- PDF "PD function"
EXAMPLES:

(1). \[\begin{align*}
\dot{x}_1 &= -x_2 + x_1 (x_1^2 + x_2^2 - 1) \\
\dot{x}_2 &= x_1 + x_2 (x_1^2 + x_2^2 - 1)
\end{align*} \]

Choose \(\nu(x) = x_1^2 + x_2^2 \) LPDF (by inspection)

\[\dot{\nu}(x) = 2(x_1^2 + x_2^2)(x_1^2 + x_2^2 - 1) \]

so \(-\dot{\nu}(x) \) is LPDF for \(\{x: x_1^2 + x_2^2 < 1\} \)

\(\Rightarrow 0 \) is a locally asymptotically stable equilibrium

(we knew this already by using this example before)

[NOTE: 0 is not globally asymptotically stable (abbr. G.A.S.) since there is a limit cycle of radius 1]
EXAMPLES

(2) \[\begin{array}{c}
\begin{array}{c}
\text{Coulomb: } \dot{x}_1 = x_2 \\
\text{Faraday: } \dot{x}_2 = -f(x_2) - g(x_1)
\end{array}
\end{array} \]

\(x_1 \) change on capacitor
\(x_2 \) velocity through inductor
\(f(x_2), g(x_1) \) voltages.

Resistor \& Capacitor are \underline{locally Passive}:
\[\begin{align*}
\quad & x f(x) \geq 0 \quad \forall x \in [-x_0, x_0] \\
\quad & x g(x) > 0 \quad \underline{local}
\end{align*} \]

- Use total energy of the system as a Lyapunov function candidate

\[V(x) = \frac{x_2^2}{2} + \int_0^{x_1} g(\xi) d\xi \]

- \(V(x) \) is \{LPDF [provided that \(g(x_1) \) is not identically zero on some interval]

\[V(x) = x_2 [-f(x_2) - g(x_1)] + g(x_1) x_2 \]
\[= -x_2 f(x_2) \leq 0 \]
\[\Rightarrow \text{STABILITY} \quad [\text{of } (0,0)] \]
SYNCHRONOUS GENERATOR:

EXAMPLES: angle of rotor of generator

\[\Theta \]

supply angle 0°

\[P_m \rightarrow P_e \cdot \text{electrical power output} \]

mechanical power input

\[M \cdot \text{moment of inertia of generator} \]

\[D \cdot \text{generator's damping} \]

\[B \cdot \text{susceptance of bus} \]

\[\dot{\Theta} = \omega \]

\[\dot{\omega} = -M^{-1}(DW + P_m - B\sin\Theta) \]

\[= -M^{-1}DW - M^{-1}(P_m - B\sin\Theta) \]

\[f(\omega) \quad g(\Theta) \]

equilibrium point at

\[w_o = 0 \]

\[\Theta_o = \sin^{-1}\frac{B}{P_m} \]

use same Lyapunov fn as before:

\[V(\Theta, \omega) = \frac{1}{2}M\omega^2 + P_m \Theta + B\cos\Theta \]

Translated:

\[V(\Theta, \omega) - V(\Theta_o, w_o) \]

is an LPDF around \((\Theta_o, w_o)\)

\[\dot{V}(\Theta, \omega) = -DW^2 \leq 0 \]

\[\Rightarrow \text{STABILITY of } (\Theta_o, w_o) \]
LaSalle's Invariance Principle

(For Time Invariant Systems)

From the Lyapunov Stability Theorem, we know that if \(V(x) \) is LPDF (PDF) and \(\dot{V}(x) \leq 0 \), for \(x \in \mathbb{R} \) (or \(x \in \mathbb{R}^n \)) then \(\dot{x} = f(x) \) is stable at 0 (globally stable).

However, we may still be able to prove asymptotic stability in this case using:

LaSalle's Principle:

Define \(\Omega_c := \{ x \in \mathbb{R}^n : V(x) < C \} \)
Suppose \(\Omega_c \) is bounded, and \(\dot{V} \leq 0 \) for all \(x \in \Omega_c \).
Define \(S := \{ x \in \Omega_c : V(x) = 0 \} \)
Let \(M \) be the largest invariant set in \(S \). Then, whenever \(x_0 \in \Omega_c \), \(x(t) \) approaches \(M \) as \(t \to \infty \).
\[\mathcal{L}_c = \{ x \in \mathbb{R}^n : v(x) \leq 0 \} \]
\[S = \{ x \in \mathcal{L}_c : v(x) = 0 \} \]

\(M \) is the largest invariant set in \(S \).

Idea of Proof: if \(x_0 \in \mathcal{L}_c, x(t) \in \mathcal{L}_c \ \forall t \).

Let \(c_0 = \lim_{t \to \infty} v(x(t)) \) (we know this exists since \(v(x(t)) \) is bounded below).

Fact: if a trajectory is completely enclosed within a bounded set, then the set of "limit points" that the trajectory can tend to (ie. equilibria, limit cycles) is bounded. Further, the trajectory approaches this limit set as \(t \to \infty \). [Wiggins pp 46-50]

Let \(L \) be the "limit set" of \(x(t) \). Then \(v(y) = c_0 \) for \(y \in L \), and \(v(y) = 0 \) for \(y \notin L \). Therefore \(L \subseteq S \). But \(L \subseteq M \) also since \(L \) is invariant. \(x(t) \to M \ \text{as} \ t \to \infty \).
How To Use Caselle's Principle to Establish Asymptotic Stability?

Caselle's Theorem (1960)

Given \(\dot{x} = f(x) \), \(v: \mathbb{R}^n \rightarrow \mathbb{R} \), I.P.D.F.

\[\dot{v}(x) \leq 0 \text{ for } x \in \Omega_c \]

where \(\Omega_c = \{ x \in \mathbb{R}^n : v(x) \leq c \} \)

Let \(S = \{ x \in \Omega_c : \dot{v}(x) = 0 \} \) which stays

Then if the only trajectory in \(S \) is \(x(t) = 0 \), \(\dot{x} = f(x) \) is locally asymptotically stable near \(x^* = 0 \).

Remarks:

1) Global version of above:

(Uses \(v(x) \): \(\mathbb{R}^n \rightarrow \mathbb{R} \) PDF

\[\dot{v}(x) \leq 0, \text{ } x \in \mathbb{R}^n \]

\[\Rightarrow \text{Global Asymptotic Stability} \]

2) The theorem works because, even though \(\dot{v}(x) \leq 0 \), the only trajectory of \(\dot{x} = f(x) \) with \(\dot{v}(x(t)) = 0 \) is \(x(t) = 0 \) (trivial trajectory).
EXAMPLES

1) \begin{align*}
\frac{dx_1}{dt} &= x_2 \\
\frac{dx_2}{dt} &= -f(x_2) - g(x_1)
\end{align*}

- Resistor: Capacitor are locally Passive
 \(x f(x) \geq 0, \quad x g(x) \geq 0 \quad \forall x \in [-x_0, x_0] \)

- As before, \(V(x) = \frac{x_2^2}{2} + \int_0^{x_1} g(s) ds \)
 \(V(x) \) is Lyapunov [Assuming no deadband in \(g(\cdot) \)]
 \(\dot{V}(x) = -x_2 f(x_2) \leq 0 \)
 \(\Rightarrow \) STABILITY of \((0,0)\).

CAN WE SAY MORE?

Let \(D = \{ x \in \mathbb{R}^2 \mid -x_0 < x_i < x_0 \} \quad i = 1, 2 \)
\(S = \{ x \in D \mid \dot{V}(x) = 0 \} \)
To characterize \(S \), note that
\(\dot{V}(x) = 0 \Rightarrow x_2 f(x_2) = 0 \)
\(\Rightarrow x_2 = 0 \), since \(-x_0 < x_2 < x_0\).
EXAMPLES

1) (cont'd)

\[S = \{ x \in \mathbb{D} / x_2 = 0 \} \]

Now suppose \(x(t) \) is a trajectory that stays in \(S \):

\[x_2 = 0 \Rightarrow \dot{x}_2 = 0 \Rightarrow g(x_1(t)) = 0 \Rightarrow x_1(t) = 0 \]

Therefore, the only solution that can stay in \(S \) is \(x(t) = 0 \).

Therefore, \(x^* = 0 \) is asymptotically stable.
EXAMPLES

2). Consider the system
 \[y' = ay + u \quad y, u \in \mathbb{R} \]
 \(u \) is called the "control" and we can manipulate it to make the system do what we want.

Consider the adaptive control law
 \[u = -ky, \quad k = \gamma y^2, \quad \gamma > 0 \]

The closed loop system may be written as:
 \[y' = -(k-a)y \]
 \[k = \gamma y^2 \]

- \(y = 0 \) is a line of equilibria

We want to show that the trajectory of the system approaches this equilibrium set as \(t \to \infty \), meaning that the adaptive controller succeeds in regulating \(y \) to zero.
Consider the Lyapunov function candidate

\[V(y, \kappa) = \frac{1}{2} y^2 + \frac{1}{2\gamma} (k-b)^2 \]

where \(b > a \).

\[V(y, \kappa) = -y^2(k-a) + y^2(k-b) = -y^2(b-a) \leq 0. \]

For any finite \(c > 0 \), the set

\[\Omega_c = \{ [y, \kappa] \in \mathbb{R}^2 \mid V(y, \kappa) \leq c \} \]

is positively invariant bounded.

\[S = \{ [y, \kappa] \in \Omega_c \mid y = 0 \} \]

\[M = S. \]

From LaSalle's Theorem, every trajectory starting in \(\Omega_c \), \([y, \kappa](t)\), approaches \(M \) as \(t \to \infty \) [This actually holds globally]

\[\therefore y(t) \to 0 \text{ as } t \to \infty. \]
Global version of LaSalle's Theorem

Consider the system

\[\dot{x} = f(x) \quad , \quad x_0 = 0 \]

let \(v(x) \) be a PDF with \(\dot{v} \leq 0 \quad \forall x \in \mathbb{R}^n \)

If the set

\[S = \{ x \in \mathbb{R}^n : v(x) = 0 \} \]

contains no invariant sets other than the origin, then the origin is globally asymptotically stable.

LaSalle's Theorem for Periodic Systems

Consider the system

\[\dot{x} = f(x, t) \quad , \quad x_0 = 0 \]

where \(f \) is periodic

\[f(x, t) = f(x, t+T) \quad \forall t \in \mathbb{R}^n \]

Further, let \(v(x, t) \) be a PDF which is periodic in \(t \) with period \(T \). Define

\[S = \{ x \in \mathbb{R}^n : v(x, t) = 0 \quad \forall t \geq 0 \} \]

Then if \(\dot{v}(x, t) \leq 0 \quad \forall x \in \mathbb{R}^n \quad \forall t \geq 0 \) and \(S \) contains no invariant sets other than the origin, then the origin is globally a.s.
Generalization of LaSalle's Theorem:

A difficulty arises in extending LaSalle's Theorem to arbitrary time-varying systems, which is that

\[\{ x : \dot{v}(x,t) = 0 \} \]

may be a time-varying set.

However, if we can assume that:

\[\dot{v}(x,t) \leq -W(x) \leq 0 \]

Then the set \(S \) may be defined as:

\[\{ x : W(x) = 0 \} \]

and LaSalle's Theorem may be generalized as follows:

Consider \(\dot{x} = f(x,t), \ x_e = 0 \), and suppose that for \(x \in B_r \) (a ball of radius \(r \) around \(x_e \)), there exists a function \(v(x,t) \) such that for functions \(x_1, x_2 \) of class \(K \):

\[x_1(1x1) \leq v(x,t) \leq x_2(1x1) \]

Also, assume that for some
non-negative function \(w(x) \)

\[
\dot{u}(x,t) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} f(x,t) \leq -w(x) \leq 0
\]

Then, for all \(\|x(t_0)\| \leq \alpha^{-1}_2(x,(r)) \), the trajectories \(x(t) \) are bounded and

\[
\lim_{t \to \infty} w(x(t)) = 0
\]

[meaning that \(x(t) \) approached a set \(E \) defined by:

\[
E := \{ x \in B_r : w(x) = 0 \}.
\]
Lyapunov Theory. Example.

Nonlinear Spring:

\[M \ddot{x} = -F_s \quad \text{where} \quad F_s = k(x) \]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
x_2 \\
-\frac{1}{M} k(x_1)
\end{bmatrix}
\]

Example: Duffing equation, no friction

Nonlinear spring \(F_s = k(x) \)

Restoring: \(k(x)x \geq 0 \) for all \(x \)
\[V(x) = \frac{1}{2} mx_2^2 + \int k(y) \, dy \]

total energy. K.E P.E.

\[v(x) = [k(x_1), mx_z] [\begin{bmatrix} x_2 \\ -\frac{1}{m} k(x_1) \end{bmatrix}] = 0 \]

\[v(x) \leq 0. \]

So if \(v(x) \) is LPD or PD we can determine the stability of the system \(x_1 \).

\[V(x) = \frac{1}{2} mx_2^2 + \int k(y) \, dy \]

\[\geq 0 \]

\[\geq 0 \] since restoring spring (ie \(x_1, k(x_1) \geq 0 \))

\[\geq 0 \]

\[v(x) \geq 0. \]

\[(\text{semi-PD}) \]

When is \(V(x) \) LPD or PD? When \(x_1 \cdot k(x_1) \geq 0 \) and when the spring has no deadzone at 0. i.e. cannot have this situation:

\[k(x) = 0 \text{ when } x = 0 \]