E209A LECTURE 3

GOALS OF THIS LECTURE:

- introduce some notation from Real Analysis which we'll use
- introduce the concept of Index Theory
- Poincaré Theorem: relationship between nodes, centers, foci, saddles

a closed orbit.

REFS:

SASTRY § 2.4
KHALIL § 2.6
Analysis of Planar Dynamical Systems (cont.)

Some definitions about sets in \mathbb{R}^n:

- set $E \subset \mathbb{R}^n$ (subset of)
- point $p \in \mathbb{R}^n$ (element of)

Def A **neighborhood** of p is a set $N(p, S) \subset \mathbb{R}^n$ consisting of all points q such that $||p-q|| < S$ for $S > 0$.

Def A point p is a **limit point** of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.

Def E is **closed** if every limit point of E is a point of E.

Def E is **open** if every point $p \in E$ has a neighborhood $N(p, S) \subset E$.

Def E is **bounded** if there is a real number $M \in \mathbb{R}$ and a point $q \in \mathbb{R}^n$ such that $||p-q|| < M$ for all $p \in E$.

E.g. here p is on the boundary of E, and is thus a limit pt. of E.

E is closed \iff E contains its boundary.

E is open \iff E does not contain its boundary.
Index Theory:

Defn let J be a closed, positively oriented contour in \mathbb{R}^2 enclosing a simply connected region D. Consider the system "NL":

$$\dot{x} = f(x), \quad x \in \mathbb{R}^2$$

Where $f \neq 0$ on J. The index of D with respect to f is defined as

$$\text{Idx}(D) = \frac{1}{2\pi} \oint_J \text{d} \Theta_f(x)$$

Where $\Theta_f(x) := \tan^{-1} \frac{f_2}{f_1}$.

Remarks

1. Θ_f is the angle made by f with the x_1-axis:

2. If $\text{Idx}(D)$ is $\frac{1}{2\pi} \times (\text{the net change in the direction of } f \text{ as we traverse } J \text{ counterclockwise})$.
3. If \(f(D) \) is always an integer.

4. If \(x_0 \) is an equilibrium point inside \(D \) and \(D \) encloses no other equilibrium points then \(I_f(D) \) is denoted \(I_f(x_0) \) and is called the index of an equilibrium point.

Example:

\[
\begin{align*}
 x_2 & \quad \rightarrow \\
 \rightarrow & \quad x_1
\end{align*}
\]

\[\Rightarrow I_f(D) = 1. \]

Example

\[
\begin{align*}
 x_2 & \quad \rightarrow \\
 \rightarrow & \quad x_1
\end{align*}
\]

Suppose \(I_f(D) = 1 \), can we make a claim as to what is inside \(D \)?
INDEX THEORY - EXAMPLES.

If \((x_0) \), where \(x_0 \) is:
(a) an unstable node

\[I_f (x_0) = 1 \]

(b) a stable node

\[I_f (x_0) = 1 \]

(c) a saddle

\[I_f (x_0) = -1 \]

(d) a focus

\[I_f (x_0) = 1 \]

(e) a center

\[I_f (x_0) = 1 \]

(f)

\[
\begin{align*}
\dot{x}_1 &= x_1^2 - x_2^2 \\
\dot{x}_2 &= 2x_1x_2 \\
x_0 &= (0,0) \\
I_f (x_0) &= 2
\end{align*}
\]
Remark: If D contains finitely many equilibrium points x_{0i}, $i=1,2,\ldots,p$, then $\text{If}(D) = \sum_{i=1}^{p} \text{If}(x_{0i})$.

\[\text{If}(D) = 1 - 1 + 1 = 1 \]

Remark: Let Y be a closed orbit of f enclosing an open set U. Then U must contain at least one equilibrium point.

Poincaré Theorem: Let N represent the number of nodes, centers, and foci enclosed by a closed orbit, and let S represent the number of enclosed saddle points. Then $N = S + 1$.

In general, index theory allows you to predict the existence of equilibrium points without doing detailed calculations.
Generalization of Index Theory to higher dimensions:

(called Degree Theory ... chap. 3)

If \((x_0) = \text{sgn} (\det Df(x_0)) \)

... undefined for \(d = 0 \) ...