GOALS OF THIS LECTURE:

to show how describing functions may be used in stability analysis of closed loop systems.

REFS

SASTRY G 4.1
KHALIL G 7.2
Using Describing Functions in Stability Studies

WARNING: block diagram manipulations for nonlinear systems.

First harmonic terms from each \(f_i \) add to give first harmonic from \(f \).

\[
\Rightarrow N_f(a) = N_{f_1}(a) + N_{f_2}(a) + \cdots + N_{f_i}(a)
\]

Application: if we can decompose a given \(f \) as

\[
f(x) = \Xi f_i(x)
\]

for \(f_i \) having known \(N_{f_i} \), then

\[
N_f(a) = \Xi N_{f_i}(a) \quad (\text{easy to find})
\]

However:

WARNING: \(N_f(a) \neq N_{f_1}(a) \cdot N_{f_2}(a) \) \& in general

and similarly for several functions \(f_i \) in series.
Also: for linear systems.

\[
\begin{array}{c}
\rightarrow g_1(s) \rightarrow g(s) \rightarrow \Xi \\
\rightarrow g_2(s) \rightarrow g(s) \\
\end{array}
\]

\[\equiv\]

\[
\begin{array}{c}
\rightarrow g_1 \\
\rightarrow g_2 \\
\end{array}
\]

but for non-linear systems

\[
\begin{array}{c}
\rightarrow g_1(s) \rightarrow n \rightarrow \Xi \\
\rightarrow g_2(s) \rightarrow n \\
\end{array}
\]

\[\not\equiv\]

because, for non-linear \(n \), superposition is not valid.

For non-linear systems, manipulations are OK iff inputs to non-linearities remain unaltered.

\[
\begin{array}{c}
\rightarrow \Xi \\
\rightarrow g_1 \rightarrow n \rightarrow g_2 \\
\end{array}
\]

\[\equiv\]

\[
\begin{array}{c}
\rightarrow g_1 \rightarrow \Xi \\
\rightarrow n \\
\rightarrow \left(g_2 + g_1, g_3 \right) \\
\end{array}
\]
Many nonlinear systems can be written as:

\[O \xrightarrow{+} e \xrightarrow{\leq} n \xrightarrow{v} g(s) \xrightarrow{} y \]

where \(n \) is a SVSS or DVSS function.

Concentrate on error \(e \): since if we know what happens to \(e \), we can determine what happens elsewhere in the system, easily.

- Will it oscillate?
- What amplitude?
- What \(\omega \)?

Assume

\[e \xrightarrow{=} \text{sustained sinusoidal oscillation} \]

\[\Rightarrow e(t) = a \sin(\omega t + \theta) \text{ for some } a, \omega, \theta \]

Then

\[v(t) = n(e(t)) \]

\[= n\left(a \sin(\omega t + \theta)\right) \]

\[= a |N(a)| \sin(\omega t + \theta + \phi(a)) + \text{higher order terms} \]

where \(N(a) \) is the transfer function between the input to \(n \) and the 1st harmonic in the output of \(n \), and \(\phi(a) \) is the phase angle associated with \(N(a) \).
\[e(t) = a \sin (wt + \theta) \]
\[v(t) = a \left| N(a) \right| \sin (wt + \theta + \phi(a)) + \text{higher harmonics.} \]

Assume: \(g(s) \) attenuates higher harmonics, in that \(g \) looks like: \(|g|\)

Then \(y(t) \approx \) result of \(g \) operating on 1st harmonic in \(v \)
\[\approx |g(jw)| a \left| N(a) \right| \sin (wt + \theta + \phi(a) + \gamma(w)) \]

So \[e(t) = -y(t) \]
\[\Rightarrow a \sin (wt + \theta) \approx -|g(jw)| a \left| N(a) \right| \sin (wt + \theta + \phi(a) + \gamma(w)) \]

Assume this is actually
\[a \sin (wt + \theta) = -|g(jw)| a \left| N(a) \right| \sin (wt + \theta + \phi(a) + \gamma(w)) \]

In phasor form:
\[a e^{j(wt + \theta)} = -|g(jw)| a \left| N(a) \right| e^{j(wt + \theta + \phi(a) + \gamma(w))} \]
\[= -a \left| g(jw) \right| e^{j\gamma(w)} \left| N(a) \right| e^{j\phi(a)} e^{j(wt + \theta)} \]
i.e. $1 = -\frac{g(jw)}{e^{j\gamma(w)}} \cdot \frac{|N(a)|e^{j\varphi(a)}}{g(jw)}$

Harmonic balance equation

$g(jw) = -\frac{1}{N(a)}$

Relationship between w and a

Assumptions made:
- $e(t) = a \sin (wt + \theta)$
- g attenuates higher frequencies
- Describing function is exact

Example:

Assume: $g(s) = \frac{40}{s(s^2+2)(s+8)}$

Suggests: if intersection takes place, then oscillations may occur in e with the w, a associated with the intersection point.
But if we had:

\[g(jw) = -\frac{1}{N(a)} \]

not true for any \(w, a \),

which suggests no oscillation (because if \(e(t) = a \sin(\omega t + \theta) \) and assumptions all valid, then \(g(jw) = -\frac{1}{N(a)} \) must be true for some \(w, a \).

Note: Predictions not foolproof in that, owing to the approximations involved in the analysis:

- predicted oscillations might not happen
- predicted no-oscillations might be false

Nonetheless, this is often a useful tool.

Q: Can we predict whether oscillations will decay, be sustained, or explode?

A: Yes... using an extension of Nyquist.
Nyquist:

\[\begin{array}{c}
\text{constant gain} \\
\leftarrow \\
K \\
\rightarrow \\
\text{g(s)} \\
\end{array} \]

Then: closed loop poles are in open left half plane iff complete \(g(j\omega) \) - locus encircles \(\left[-\frac{1}{K} + j0 \right] \) \(\times \) times (anticlockwise)

\[\text{# OL poles in open RHP} \]

eg. \(p = 0 \)

- \(\frac{1}{K} \) here: all poles in open LHP.

\[\text{\(\frac{1}{K} \) here: at least one closed loop pole in closed rhp} \]

Actually, true for all \(k \in \mathbb{C} \):

eg. \(p = 0 \)

- \(\frac{1}{k} \) here: all poles in gain rhp

\[\text{-\(\frac{1}{k} \) here: at least one closed loop pole in } \]

eg. \(p = 0 \)

\[\text{closed rhp.} \]

\[\text{at least one closed loop pole in closed rhp if } -\frac{1}{k} \in \mathbb{R} \]
Application to:

\[0 \xrightarrow{\leq} e \xrightarrow{n} g(s) \rightarrow y \]

For \(e(t) = a \sin(\omega t + \theta) \) view \(g \) as approximated by:

\[k = N(a) \in \mathbb{C} \]

because the complex number \(N(a) \) is the transfer function between the input sinusoid to \(n \) and the first harmonic in the output of \(n \).

Also, assume \(N(a) \) works for \(e(t) \) of the form \(ae^{\lambda t} \sin(\omega t + \theta) \) [as well as the case we just did - for \(e(t) \) of the form \(a \sin(\omega t + \theta) \)]

Then, growth or decay of \(e(t) \) is predictable from position of \(-\frac{1}{k} = -\frac{1}{N(a)} \) with respect to \(g(j\omega) \)-locus.

\[\text{eg: if } -\frac{1}{N(a)} \text{ is here} \]

\[\text{growing } e(t) \] (if \(-\frac{1}{N(a)} \) is here)
Hence can predict \(e(t) \) behavior:

- Say \(e(0) = 0 \) and \(p = 0 \)

\[\begin{align*}
\text{start here as } e(0) &= 0; \text{ corresponds to } a = 0 \\
\text{initially oscillation grows as } &-\frac{1}{N(a)} e \rightarrow \text{III} \\
\Rightarrow & a \text{ increased} \\
\Rightarrow & -\frac{1}{N(a)} \text{ move to b, but stops at b as} \\
\text{e(t)} & \text{ and hence a decreased on left of b} \\
\Rightarrow & \text{sustained oscillation with a, w values those at b.} \\
\Rightarrow & \text{means "implies, more or less"}
\end{align*} \]

Since:

\[-\frac{1}{N(a)} e \rightarrow \text{growing amplitude a of assumed sinusoid} \]

\[-\frac{1}{N(a)} e \text{ unshaded } \rightarrow \text{decaying amplitude a of assumed sinusoid e.} \]
WARNING:

Describing function analysis based on many approximations ➞ predictions not necessarily correct

Can redo theory for:

$$e(t) = \sum_{i=1}^{r} a_i \sin (w_i t + \theta_i)$$

$$\downarrow$$

Multiple-input describing functions

$$\downarrow$$

For which, can be shown: If a closed loop oscillation exists, it can be predicted for some finite r,

and for which:

error bounds can be obtained.